1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/fullband_erle_estimator.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include <optional>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
constexpr float kEpsilon = 1e-3f;
constexpr float kX2BandEnergyThreshold = 44015068.0f;
constexpr int kBlocksToHoldErle = 100;
constexpr int kPointsToAccumulate = 6;
} // namespace
FullBandErleEstimator::FullBandErleEstimator(
const EchoCanceller3Config::Erle& config,
size_t num_capture_channels)
: min_erle_log2_(FastApproxLog2f(config.min + kEpsilon)),
max_erle_lf_log2_(FastApproxLog2f(config.max_l + kEpsilon)),
hold_counters_instantaneous_erle_(num_capture_channels, 0),
erle_time_domain_log2_(num_capture_channels, min_erle_log2_),
instantaneous_erle_(num_capture_channels, ErleInstantaneous(config)),
linear_filters_qualities_(num_capture_channels) {
Reset();
}
FullBandErleEstimator::~FullBandErleEstimator() = default;
void FullBandErleEstimator::Reset() {
for (auto& instantaneous_erle_ch : instantaneous_erle_) {
instantaneous_erle_ch.Reset();
}
UpdateQualityEstimates();
std::fill(erle_time_domain_log2_.begin(), erle_time_domain_log2_.end(),
min_erle_log2_);
std::fill(hold_counters_instantaneous_erle_.begin(),
hold_counters_instantaneous_erle_.end(), 0);
}
void FullBandErleEstimator::Update(
ArrayView<const float> X2,
ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
const std::vector<bool>& converged_filters) {
for (size_t ch = 0; ch < Y2.size(); ++ch) {
if (converged_filters[ch]) {
// Computes the fullband ERLE.
const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f);
if (X2_sum > kX2BandEnergyThreshold * X2.size()) {
const float Y2_sum =
std::accumulate(Y2[ch].begin(), Y2[ch].end(), 0.0f);
const float E2_sum =
std::accumulate(E2[ch].begin(), E2[ch].end(), 0.0f);
if (instantaneous_erle_[ch].Update(Y2_sum, E2_sum)) {
hold_counters_instantaneous_erle_[ch] = kBlocksToHoldErle;
erle_time_domain_log2_[ch] +=
0.05f * ((instantaneous_erle_[ch].GetInstErleLog2().value()) -
erle_time_domain_log2_[ch]);
erle_time_domain_log2_[ch] =
std::max(erle_time_domain_log2_[ch], min_erle_log2_);
}
}
}
--hold_counters_instantaneous_erle_[ch];
if (hold_counters_instantaneous_erle_[ch] == 0) {
instantaneous_erle_[ch].ResetAccumulators();
}
}
UpdateQualityEstimates();
}
void FullBandErleEstimator::Dump(
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
data_dumper->DumpRaw("aec3_fullband_erle_log2", FullbandErleLog2());
instantaneous_erle_[0].Dump(data_dumper);
}
void FullBandErleEstimator::UpdateQualityEstimates() {
for (size_t ch = 0; ch < instantaneous_erle_.size(); ++ch) {
linear_filters_qualities_[ch] =
instantaneous_erle_[ch].GetQualityEstimate();
}
}
FullBandErleEstimator::ErleInstantaneous::ErleInstantaneous(
const EchoCanceller3Config::Erle& config)
: clamp_inst_quality_to_zero_(config.clamp_quality_estimate_to_zero),
clamp_inst_quality_to_one_(config.clamp_quality_estimate_to_one) {
Reset();
}
FullBandErleEstimator::ErleInstantaneous::~ErleInstantaneous() = default;
bool FullBandErleEstimator::ErleInstantaneous::Update(const float Y2_sum,
const float E2_sum) {
bool update_estimates = false;
E2_acum_ += E2_sum;
Y2_acum_ += Y2_sum;
num_points_++;
if (num_points_ == kPointsToAccumulate) {
if (E2_acum_ > 0.f) {
update_estimates = true;
erle_log2_ = FastApproxLog2f(Y2_acum_ / E2_acum_ + kEpsilon);
}
num_points_ = 0;
E2_acum_ = 0.f;
Y2_acum_ = 0.f;
}
if (update_estimates) {
UpdateMaxMin();
UpdateQualityEstimate();
}
return update_estimates;
}
void FullBandErleEstimator::ErleInstantaneous::Reset() {
ResetAccumulators();
max_erle_log2_ = -10.f; // -30 dB.
min_erle_log2_ = 33.f; // 100 dB.
inst_quality_estimate_ = 0.f;
}
void FullBandErleEstimator::ErleInstantaneous::ResetAccumulators() {
erle_log2_ = std::nullopt;
inst_quality_estimate_ = 0.f;
num_points_ = 0;
E2_acum_ = 0.f;
Y2_acum_ = 0.f;
}
void FullBandErleEstimator::ErleInstantaneous::Dump(
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
data_dumper->DumpRaw("aec3_fullband_erle_inst_log2",
erle_log2_ ? *erle_log2_ : -10.f);
data_dumper->DumpRaw(
"aec3_erle_instantaneous_quality",
GetQualityEstimate() ? GetQualityEstimate().value() : 0.f);
data_dumper->DumpRaw("aec3_fullband_erle_max_log2", max_erle_log2_);
data_dumper->DumpRaw("aec3_fullband_erle_min_log2", min_erle_log2_);
}
void FullBandErleEstimator::ErleInstantaneous::UpdateMaxMin() {
RTC_DCHECK(erle_log2_);
// Adding the forgetting factors for the maximum and minimum and capping the
// result to the incoming value.
max_erle_log2_ -= 0.0004f; // Forget factor, approx 1dB every 3 sec.
max_erle_log2_ = std::max(max_erle_log2_, erle_log2_.value());
min_erle_log2_ += 0.0004f; // Forget factor, approx 1dB every 3 sec.
min_erle_log2_ = std::min(min_erle_log2_, erle_log2_.value());
}
void FullBandErleEstimator::ErleInstantaneous::UpdateQualityEstimate() {
const float alpha = 0.07f;
float quality_estimate = 0.f;
RTC_DCHECK(erle_log2_);
// TODO(peah): Currently, the estimate can become be less than 0; this should
// be corrected.
if (max_erle_log2_ > min_erle_log2_) {
quality_estimate = (erle_log2_.value() - min_erle_log2_) /
(max_erle_log2_ - min_erle_log2_);
}
if (quality_estimate > inst_quality_estimate_) {
inst_quality_estimate_ = quality_estimate;
} else {
inst_quality_estimate_ +=
alpha * (quality_estimate - inst_quality_estimate_);
}
}
} // namespace webrtc
|