1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include <math.h>
#include <array>
#include <cmath>
#include <numbers>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "rtc_base/random.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr float kPi = std::numbers::pi_v<float>;
void ProduceSinusoidInNoise(int sample_rate_hz,
size_t sinusoid_channel,
float sinusoidal_frequency_hz,
Random* random_generator,
size_t* sample_counter,
Block* x) {
// Fill x with low-amplitude noise.
for (int band = 0; band < x->NumBands(); ++band) {
for (int channel = 0; channel < x->NumChannels(); ++channel) {
RandomizeSampleVector(random_generator, x->View(band, channel),
/*amplitude=*/500.f);
}
}
// Produce a sinusoid of the specified frequency in the specified channel.
for (size_t k = *sample_counter, j = 0; k < (*sample_counter + kBlockSize);
++k, ++j) {
x->View(/*band=*/0, sinusoid_channel)[j] +=
32000.f *
std::sin(2.f * kPi * sinusoidal_frequency_hz * k / sample_rate_hz);
}
*sample_counter = *sample_counter + kBlockSize;
}
void RunNarrowBandDetectionTest(size_t num_channels) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
Random random_generator(42U);
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
Block x(kNumBands, num_channels);
std::array<float, kBlockSize> x_old;
Aec3Fft fft;
EchoCanceller3Config config;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, num_channels));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
constexpr int kSinusFrequencyBin = 32;
auto generate_sinusoid_test = [&](bool known_delay) {
size_t sample_counter = 0;
for (size_t k = 0; k < 100; ++k) {
ProduceSinusoidInNoise(16000, num_channels - 1,
16000 / 2 * kSinusFrequencyBin / kFftLengthBy2,
&random_generator, &sample_counter, &x);
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
known_delay ? std::optional<size_t>(0) : std::nullopt);
}
};
generate_sinusoid_test(true);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
for (int k = 0; k < static_cast<int>(mask.size()); ++k) {
EXPECT_EQ(abs(k - kSinusFrequencyBin) <= 2 ? 0.f : 1.f, mask[k]);
}
EXPECT_TRUE(analyzer.PoorSignalExcitation());
EXPECT_TRUE(static_cast<bool>(analyzer.NarrowPeakBand()));
EXPECT_EQ(*analyzer.NarrowPeakBand(), 32);
// Verify that no bands are detected as narrow when the delay is unknown.
generate_sinusoid_test(false);
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
std::for_each(mask.begin(), mask.end(), [](float a) { EXPECT_EQ(1.f, a); });
EXPECT_FALSE(analyzer.PoorSignalExcitation());
}
std::string ProduceDebugText(size_t num_channels) {
StringBuilder ss;
ss << "number of channels: " << num_channels;
return ss.Release();
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output parameter works.
TEST(RenderSignalAnalyzerDeathTest, NullMaskOutput) {
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
EXPECT_DEATH(analyzer.MaskRegionsAroundNarrowBands(nullptr), "");
}
#endif
// Verify that no narrow bands are detected in a Gaussian noise signal.
TEST(RenderSignalAnalyzer, NoFalseDetectionOfNarrowBands) {
for (auto num_channels : {1, 2, 8}) {
SCOPED_TRACE(ProduceDebugText(num_channels));
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
Random random_generator(42U);
Block x(3, num_channels);
std::array<float, kBlockSize> x_old;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(EchoCanceller3Config(), 48000, num_channels));
std::array<float, kFftLengthBy2Plus1> mask;
x_old.fill(0.f);
for (int k = 0; k < 100; ++k) {
for (int band = 0; band < x.NumBands(); ++band) {
for (int channel = 0; channel < x.NumChannels(); ++channel) {
RandomizeSampleVector(&random_generator, x.View(band, channel));
}
}
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
std::optional<size_t>(0));
}
mask.fill(1.f);
analyzer.MaskRegionsAroundNarrowBands(&mask);
EXPECT_TRUE(std::all_of(mask.begin(), mask.end(),
[](float a) { return a == 1.f; }));
EXPECT_FALSE(analyzer.PoorSignalExcitation());
EXPECT_FALSE(static_cast<bool>(analyzer.NarrowPeakBand()));
}
}
// Verify that a sinusoid signal is detected as narrow bands.
TEST(RenderSignalAnalyzer, NarrowBandDetection) {
for (auto num_channels : {1, 2, 8}) {
SCOPED_TRACE(ProduceDebugText(num_channels));
RunNarrowBandDetectionTest(num_channels);
}
}
} // namespace webrtc
|