1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/reverb_decay_estimator.h"
#include <stddef.h>
#include <algorithm>
#include <cmath>
#include <numeric>
#include "api/array_view.h"
#include "api/audio/echo_canceller3_config.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr int kEarlyReverbMinSizeBlocks = 3;
constexpr int kBlocksPerSection = 6;
// Linear regression approach assumes symmetric index around 0.
constexpr float kEarlyReverbFirstPointAtLinearRegressors =
-0.5f * kBlocksPerSection * kFftLengthBy2 + 0.5f;
// Averages the values in a block of size kFftLengthBy2;
float BlockAverage(ArrayView<const float> v, size_t block_index) {
constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2;
const int i = block_index * kFftLengthBy2;
RTC_DCHECK_GE(v.size(), i + kFftLengthBy2);
const float sum =
std::accumulate(v.begin() + i, v.begin() + i + kFftLengthBy2, 0.f);
return sum * kOneByFftLengthBy2;
}
// Analyzes the gain in a block.
void AnalyzeBlockGain(const std::array<float, kFftLengthBy2>& h2,
float floor_gain,
float* previous_gain,
bool* block_adapting,
bool* decaying_gain) {
float gain = std::max(BlockAverage(h2, 0), 1e-32f);
*block_adapting =
*previous_gain > 1.1f * gain || *previous_gain < 0.9f * gain;
*decaying_gain = gain > floor_gain;
*previous_gain = gain;
}
// Arithmetic sum of $2 \sum_{i=0.5}^{(N-1)/2}i^2$ calculated directly.
constexpr float SymmetricArithmetricSum(int N) {
return N * (N * N - 1.0f) * (1.f / 12.f);
}
// Returns the peak energy of an impulse response.
float BlockEnergyPeak(ArrayView<const float> h, int peak_block) {
RTC_DCHECK_LE((peak_block + 1) * kFftLengthBy2, h.size());
RTC_DCHECK_GE(peak_block, 0);
float peak_value =
*std::max_element(h.begin() + peak_block * kFftLengthBy2,
h.begin() + (peak_block + 1) * kFftLengthBy2,
[](float a, float b) { return a * a < b * b; });
return peak_value * peak_value;
}
// Returns the average energy of an impulse response block.
float BlockEnergyAverage(ArrayView<const float> h, int block_index) {
RTC_DCHECK_LE((block_index + 1) * kFftLengthBy2, h.size());
RTC_DCHECK_GE(block_index, 0);
constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2;
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
return std::accumulate(h.begin() + block_index * kFftLengthBy2,
h.begin() + (block_index + 1) * kFftLengthBy2, 0.f,
sum_of_squares) *
kOneByFftLengthBy2;
}
} // namespace
ReverbDecayEstimator::ReverbDecayEstimator(const EchoCanceller3Config& config)
: filter_length_blocks_(config.filter.refined.length_blocks),
filter_length_coefficients_(GetTimeDomainLength(filter_length_blocks_)),
use_adaptive_echo_decay_(config.ep_strength.default_len < 0.f),
early_reverb_estimator_(config.filter.refined.length_blocks -
kEarlyReverbMinSizeBlocks),
late_reverb_start_(kEarlyReverbMinSizeBlocks),
late_reverb_end_(kEarlyReverbMinSizeBlocks),
previous_gains_(config.filter.refined.length_blocks, 0.f),
decay_(std::fabs(config.ep_strength.default_len)),
mild_decay_(std::fabs(config.ep_strength.nearend_len)) {
RTC_DCHECK_GT(config.filter.refined.length_blocks,
static_cast<size_t>(kEarlyReverbMinSizeBlocks));
}
ReverbDecayEstimator::~ReverbDecayEstimator() = default;
void ReverbDecayEstimator::Update(ArrayView<const float> filter,
const std::optional<float>& filter_quality,
int filter_delay_blocks,
bool usable_linear_filter,
bool stationary_signal) {
const int filter_size = static_cast<int>(filter.size());
if (stationary_signal) {
return;
}
bool estimation_feasible =
filter_delay_blocks <=
filter_length_blocks_ - kEarlyReverbMinSizeBlocks - 1;
estimation_feasible =
estimation_feasible && filter_size == filter_length_coefficients_;
estimation_feasible = estimation_feasible && filter_delay_blocks > 0;
estimation_feasible = estimation_feasible && usable_linear_filter;
if (!estimation_feasible) {
ResetDecayEstimation();
return;
}
if (!use_adaptive_echo_decay_) {
return;
}
const float new_smoothing = filter_quality ? *filter_quality * 0.2f : 0.f;
smoothing_constant_ = std::max(new_smoothing, smoothing_constant_);
if (smoothing_constant_ == 0.f) {
return;
}
if (block_to_analyze_ < filter_length_blocks_) {
// Analyze the filter and accumulate data for reverb estimation.
AnalyzeFilter(filter);
++block_to_analyze_;
} else {
// When the filter is fully analyzed, estimate the reverb decay and reset
// the block_to_analyze_ counter.
EstimateDecay(filter, filter_delay_blocks);
}
}
void ReverbDecayEstimator::ResetDecayEstimation() {
early_reverb_estimator_.Reset();
late_reverb_decay_estimator_.Reset(0);
block_to_analyze_ = 0;
estimation_region_candidate_size_ = 0;
estimation_region_identified_ = false;
smoothing_constant_ = 0.f;
late_reverb_start_ = 0;
late_reverb_end_ = 0;
}
void ReverbDecayEstimator::EstimateDecay(ArrayView<const float> filter,
int peak_block) {
auto& h = filter;
RTC_DCHECK_EQ(0, h.size() % kFftLengthBy2);
// Reset the block analysis counter.
block_to_analyze_ =
std::min(peak_block + kEarlyReverbMinSizeBlocks, filter_length_blocks_);
// To estimate the reverb decay, the energy of the first filter section must
// be substantially larger than the last. Also, the first filter section
// energy must not deviate too much from the max peak.
const float first_reverb_gain = BlockEnergyAverage(h, block_to_analyze_);
const size_t h_size_blocks = h.size() >> kFftLengthBy2Log2;
tail_gain_ = BlockEnergyAverage(h, h_size_blocks - 1);
float peak_energy = BlockEnergyPeak(h, peak_block);
const bool sufficient_reverb_decay = first_reverb_gain > 4.f * tail_gain_;
const bool valid_filter =
first_reverb_gain > 2.f * tail_gain_ && peak_energy < 100.f;
// Estimate the size of the regions with early and late reflections.
const int size_early_reverb = early_reverb_estimator_.Estimate();
const int size_late_reverb =
std::max(estimation_region_candidate_size_ - size_early_reverb, 0);
// Only update the reverb decay estimate if the size of the identified late
// reverb is sufficiently large.
if (size_late_reverb >= 5) {
if (valid_filter && late_reverb_decay_estimator_.EstimateAvailable()) {
float decay = std::pow(
2.0f, late_reverb_decay_estimator_.Estimate() * kFftLengthBy2);
constexpr float kMaxDecay = 0.95f; // ~1 sec min RT60.
constexpr float kMinDecay = 0.02f; // ~15 ms max RT60.
decay = std::max(.97f * decay_, decay);
decay = std::min(decay, kMaxDecay);
decay = std::max(decay, kMinDecay);
decay_ += smoothing_constant_ * (decay - decay_);
}
// Update length of decay. Must have enough data (number of sections) in
// order to estimate decay rate.
late_reverb_decay_estimator_.Reset(size_late_reverb * kFftLengthBy2);
late_reverb_start_ =
peak_block + kEarlyReverbMinSizeBlocks + size_early_reverb;
late_reverb_end_ =
block_to_analyze_ + estimation_region_candidate_size_ - 1;
} else {
late_reverb_decay_estimator_.Reset(0);
late_reverb_start_ = 0;
late_reverb_end_ = 0;
}
// Reset variables for the identification of the region for reverb decay
// estimation.
estimation_region_identified_ = !(valid_filter && sufficient_reverb_decay);
estimation_region_candidate_size_ = 0;
// Stop estimation of the decay until another good filter is received.
smoothing_constant_ = 0.f;
// Reset early reflections detector.
early_reverb_estimator_.Reset();
}
void ReverbDecayEstimator::AnalyzeFilter(ArrayView<const float> filter) {
auto h = ArrayView<const float>(
filter.begin() + block_to_analyze_ * kFftLengthBy2, kFftLengthBy2);
// Compute squared filter coeffiecients for the block to analyze_;
std::array<float, kFftLengthBy2> h2;
std::transform(h.begin(), h.end(), h2.begin(), [](float a) { return a * a; });
// Map out the region for estimating the reverb decay.
bool adapting;
bool above_noise_floor;
AnalyzeBlockGain(h2, tail_gain_, &previous_gains_[block_to_analyze_],
&adapting, &above_noise_floor);
// Count consecutive number of "good" filter sections, where "good" means:
// 1) energy is above noise floor.
// 2) energy of current section has not changed too much from last check.
estimation_region_identified_ =
estimation_region_identified_ || adapting || !above_noise_floor;
if (!estimation_region_identified_) {
++estimation_region_candidate_size_;
}
// Accumulate data for reverb decay estimation and for the estimation of early
// reflections.
if (block_to_analyze_ <= late_reverb_end_) {
if (block_to_analyze_ >= late_reverb_start_) {
for (float h2_k : h2) {
float h2_log2 = FastApproxLog2f(h2_k + 1e-10);
late_reverb_decay_estimator_.Accumulate(h2_log2);
early_reverb_estimator_.Accumulate(h2_log2, smoothing_constant_);
}
} else {
for (float h2_k : h2) {
float h2_log2 = FastApproxLog2f(h2_k + 1e-10);
early_reverb_estimator_.Accumulate(h2_log2, smoothing_constant_);
}
}
}
}
void ReverbDecayEstimator::Dump(ApmDataDumper* data_dumper) const {
data_dumper->DumpRaw("aec3_reverb_decay", decay_);
data_dumper->DumpRaw("aec3_reverb_tail_energy", tail_gain_);
data_dumper->DumpRaw("aec3_reverb_alpha", smoothing_constant_);
data_dumper->DumpRaw("aec3_num_reverb_decay_blocks",
late_reverb_end_ - late_reverb_start_);
data_dumper->DumpRaw("aec3_late_reverb_start", late_reverb_start_);
data_dumper->DumpRaw("aec3_late_reverb_end", late_reverb_end_);
early_reverb_estimator_.Dump(data_dumper);
}
void ReverbDecayEstimator::LateReverbLinearRegressor::Reset(
int num_data_points) {
RTC_DCHECK_LE(0, num_data_points);
RTC_DCHECK_EQ(0, num_data_points % 2);
const int N = num_data_points;
nz_ = 0.f;
// Arithmetic sum of $2 \sum_{i=0.5}^{(N-1)/2}i^2$ calculated directly.
nn_ = SymmetricArithmetricSum(N);
// The linear regression approach assumes symmetric index around 0.
count_ = N > 0 ? -N * 0.5f + 0.5f : 0.f;
N_ = N;
n_ = 0;
}
void ReverbDecayEstimator::LateReverbLinearRegressor::Accumulate(float z) {
nz_ += count_ * z;
++count_;
++n_;
}
float ReverbDecayEstimator::LateReverbLinearRegressor::Estimate() {
RTC_DCHECK(EstimateAvailable());
if (nn_ == 0.f) {
RTC_DCHECK_NOTREACHED();
return 0.f;
}
return nz_ / nn_;
}
ReverbDecayEstimator::EarlyReverbLengthEstimator::EarlyReverbLengthEstimator(
int max_blocks)
: numerators_smooth_(max_blocks - kBlocksPerSection, 0.f),
numerators_(numerators_smooth_.size(), 0.f),
coefficients_counter_(0) {
RTC_DCHECK_LE(0, max_blocks);
}
ReverbDecayEstimator::EarlyReverbLengthEstimator::
~EarlyReverbLengthEstimator() = default;
void ReverbDecayEstimator::EarlyReverbLengthEstimator::Reset() {
coefficients_counter_ = 0;
std::fill(numerators_.begin(), numerators_.end(), 0.f);
block_counter_ = 0;
}
void ReverbDecayEstimator::EarlyReverbLengthEstimator::Accumulate(
float value,
float smoothing) {
// Each section is composed by kBlocksPerSection blocks and each section
// overlaps with the next one in (kBlocksPerSection - 1) blocks. For example,
// the first section covers the blocks [0:5], the second covers the blocks
// [1:6] and so on. As a result, for each value, kBlocksPerSection sections
// need to be updated.
int first_section_index = std::max(block_counter_ - kBlocksPerSection + 1, 0);
int last_section_index =
std::min(block_counter_, static_cast<int>(numerators_.size() - 1));
float x_value = static_cast<float>(coefficients_counter_) +
kEarlyReverbFirstPointAtLinearRegressors;
const float value_to_inc = kFftLengthBy2 * value;
float value_to_add =
x_value * value + (block_counter_ - last_section_index) * value_to_inc;
for (int section = last_section_index; section >= first_section_index;
--section, value_to_add += value_to_inc) {
numerators_[section] += value_to_add;
}
// Check if this update was the last coefficient of the current block. In that
// case, check if we are at the end of one of the sections and update the
// numerator of the linear regressor that is computed in such section.
if (++coefficients_counter_ == kFftLengthBy2) {
if (block_counter_ >= (kBlocksPerSection - 1)) {
size_t section = block_counter_ - (kBlocksPerSection - 1);
RTC_DCHECK_GT(numerators_.size(), section);
RTC_DCHECK_GT(numerators_smooth_.size(), section);
numerators_smooth_[section] +=
smoothing * (numerators_[section] - numerators_smooth_[section]);
n_sections_ = section + 1;
}
++block_counter_;
coefficients_counter_ = 0;
}
}
// Estimates the size in blocks of the early reverb. The estimation is done by
// comparing the tilt that is estimated in each section. As an optimization
// detail and due to the fact that all the linear regressors that are computed
// shared the same denominator, the comparison of the tilts is done by a
// comparison of the numerator of the linear regressors.
int ReverbDecayEstimator::EarlyReverbLengthEstimator::Estimate() {
constexpr float N = kBlocksPerSection * kFftLengthBy2;
constexpr float nn = SymmetricArithmetricSum(N);
// numerator_11 refers to the quantity that the linear regressor needs in the
// numerator for getting a decay equal to 1.1 (which is not a decay).
// log2(1.1) * nn / kFftLengthBy2.
constexpr float numerator_11 = 0.13750352374993502f * nn / kFftLengthBy2;
// log2(0.8) * nn / kFftLengthBy2.
constexpr float numerator_08 = -0.32192809488736229f * nn / kFftLengthBy2;
constexpr int kNumSectionsToAnalyze = 9;
if (n_sections_ < kNumSectionsToAnalyze) {
return 0;
}
// Estimation of the blocks that correspond to early reverberations. The
// estimation is done by analyzing the impulse response. The portions of the
// impulse response whose energy is not decreasing over its coefficients are
// considered to be part of the early reverberations. Furthermore, the blocks
// where the energy is decreasing faster than what it does at the end of the
// impulse response are also considered to be part of the early
// reverberations. The estimation is limited to the first
// kNumSectionsToAnalyze sections.
RTC_DCHECK_LE(n_sections_, numerators_smooth_.size());
const float min_numerator_tail =
*std::min_element(numerators_smooth_.begin() + kNumSectionsToAnalyze,
numerators_smooth_.begin() + n_sections_);
int early_reverb_size_minus_1 = 0;
for (int k = 0; k < kNumSectionsToAnalyze; ++k) {
if ((numerators_smooth_[k] > numerator_11) ||
(numerators_smooth_[k] < numerator_08 &&
numerators_smooth_[k] < 0.9f * min_numerator_tail)) {
early_reverb_size_minus_1 = k;
}
}
return early_reverb_size_minus_1 == 0 ? 0 : early_reverb_size_minus_1 + 1;
}
void ReverbDecayEstimator::EarlyReverbLengthEstimator::Dump(
ApmDataDumper* data_dumper) const {
data_dumper->DumpRaw("aec3_er_acum_numerator", numerators_smooth_);
}
} // namespace webrtc
|