1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "api/environment/environment.h"
#include "api/environment/environment_factory.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/subtractor.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
namespace webrtc {
namespace aec3 {
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gains works.
TEST(SuppressionGainDeathTest, NullOutputGains) {
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> S2(1);
std::vector<std::array<float, kFftLengthBy2Plus1>> N2(1, {0.0f});
for (auto& S2_k : S2) {
S2_k.fill(0.1f);
}
FftData E;
FftData Y;
E.re.fill(0.0f);
E.im.fill(0.0f);
Y.re.fill(0.0f);
Y.im.fill(0.0f);
float high_bands_gain;
AecState aec_state(CreateEnvironment(), EchoCanceller3Config{}, 1);
EXPECT_DEATH(
SuppressionGain(EchoCanceller3Config{}, DetectOptimization(), 16000, 1)
.GetGain(E2, S2, R2, R2_unbounded, N2,
RenderSignalAnalyzer((EchoCanceller3Config{})), aec_state,
Block(3, 1), false, &high_bands_gain, nullptr),
"");
}
#endif
// Does a sanity check that the gains are correctly computed.
TEST(SuppressionGain, BasicGainComputation) {
constexpr size_t kNumRenderChannels = 1;
constexpr size_t kNumCaptureChannels = 2;
constexpr int kSampleRateHz = 16000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
SuppressionGain suppression_gain(EchoCanceller3Config(), DetectOptimization(),
kSampleRateHz, kNumCaptureChannels);
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
float high_bands_gain;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> S2(kNumCaptureChannels,
{0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded(
kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> N2(kNumCaptureChannels);
std::array<float, kFftLengthBy2Plus1> g;
std::vector<SubtractorOutput> output(kNumCaptureChannels);
Block x(kNumBands, kNumRenderChannels);
const Environment env = CreateEnvironment();
EchoCanceller3Config config;
AecState aec_state(env, config, kNumCaptureChannels);
ApmDataDumper data_dumper(42);
Subtractor subtractor(env, config, kNumRenderChannels, kNumCaptureChannels,
&data_dumper, DetectOptimization());
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, kNumRenderChannels));
std::optional<DelayEstimate> delay_estimate;
// Ensure that a strong noise is detected to mask any echoes.
for (size_t ch = 0; ch < kNumCaptureChannels; ++ch) {
E2[ch].fill(10.f);
Y2[ch].fill(10.f);
R2[ch].fill(0.1f);
R2_unbounded[ch].fill(0.1f);
N2[ch].fill(100.0f);
}
for (auto& subtractor_output : output) {
subtractor_output.Reset();
}
// Ensure that the gain is no longer forced to zero.
for (int k = 0; k <= kNumBlocksPerSecond / 5 + 1; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.0f, a, 0.001f); });
// Ensure that a strong nearend is detected to mask any echoes.
for (size_t ch = 0; ch < kNumCaptureChannels; ++ch) {
E2[ch].fill(100.f);
Y2[ch].fill(100.f);
R2[ch].fill(0.1f);
R2_unbounded[ch].fill(0.1f);
S2[ch].fill(0.1f);
N2[ch].fill(0.f);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.0f, a, 0.001f); });
// Add a strong echo to one of the channels and ensure that it is suppressed.
E2[1].fill(1000000000.0f);
R2[1].fill(10000000000000.0f);
R2_unbounded[1].fill(10000000000000.0f);
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(0.0f, a, 0.001f); });
}
} // namespace aec3
} // namespace webrtc
|