1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
*
* Using a feedback system, determines an appropriate analog volume level
* given an input signal and current volume level. Targets a conservative
* signal level and is intended for use with a digital AGC to apply
* additional gain.
*
*/
#include "modules/audio_processing/agc/legacy/analog_agc.h"
#include <stdlib.h>
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Errors
#define AGC_UNSPECIFIED_ERROR 18000
#define AGC_UNINITIALIZED_ERROR 18002
#define AGC_NULL_POINTER_ERROR 18003
#define AGC_BAD_PARAMETER_ERROR 18004
/* The slope of in Q13*/
static const int16_t kSlope1[8] = {21793, 12517, 7189, 4129,
2372, 1362, 472, 78};
/* The offset in Q14 */
static const int16_t kOffset1[8] = {25395, 23911, 22206, 20737,
19612, 18805, 17951, 17367};
/* The slope of in Q13*/
static const int16_t kSlope2[8] = {2063, 1731, 1452, 1218, 1021, 857, 597, 337};
/* The offset in Q14 */
static const int16_t kOffset2[8] = {18432, 18379, 18290, 18177,
18052, 17920, 17670, 17286};
static const int16_t kMuteGuardTimeMs = 8000;
static const int16_t kInitCheck = 42;
static const size_t kNumSubframes = 10;
/* Default settings if config is not used */
#define AGC_DEFAULT_TARGET_LEVEL 3
#define AGC_DEFAULT_COMP_GAIN 9
/* This is the target level for the analog part in ENV scale. To convert to RMS
* scale you
* have to add OFFSET_ENV_TO_RMS.
*/
#define ANALOG_TARGET_LEVEL 11
#define ANALOG_TARGET_LEVEL_2 5 // ANALOG_TARGET_LEVEL / 2
/* Offset between RMS scale (analog part) and ENV scale (digital part). This
* value actually
* varies with the FIXED_ANALOG_TARGET_LEVEL, hence we should in the future
* replace it with
* a table.
*/
#define OFFSET_ENV_TO_RMS 9
/* The reference input level at which the digital part gives an output of
* targetLevelDbfs
* (desired level) if we have no compression gain. This level should be set high
* enough not
* to compress the peaks due to the dynamics.
*/
#define DIGITAL_REF_AT_0_COMP_GAIN 4
/* Speed of reference level decrease.
*/
#define DIFF_REF_TO_ANALOG 5
/* Size of analog gain table */
#define GAIN_TBL_LEN 32
/* Matlab code:
* fprintf(1, '\t%i, %i, %i, %i,\n', round(10.^(linspace(0,10,32)/20) * 2^12));
*/
/* Q12 */
static const uint16_t kGainTableAnalog[GAIN_TBL_LEN] = {
4096, 4251, 4412, 4579, 4752, 4932, 5118, 5312, 5513, 5722, 5938,
6163, 6396, 6638, 6889, 7150, 7420, 7701, 7992, 8295, 8609, 8934,
9273, 9623, 9987, 10365, 10758, 11165, 11587, 12025, 12480, 12953};
/* Gain/Suppression tables for virtual Mic (in Q10) */
static const uint16_t kGainTableVirtualMic[128] = {
1052, 1081, 1110, 1141, 1172, 1204, 1237, 1271, 1305, 1341, 1378,
1416, 1454, 1494, 1535, 1577, 1620, 1664, 1710, 1757, 1805, 1854,
1905, 1957, 2010, 2065, 2122, 2180, 2239, 2301, 2364, 2428, 2495,
2563, 2633, 2705, 2779, 2855, 2933, 3013, 3096, 3180, 3267, 3357,
3449, 3543, 3640, 3739, 3842, 3947, 4055, 4166, 4280, 4397, 4517,
4640, 4767, 4898, 5032, 5169, 5311, 5456, 5605, 5758, 5916, 6078,
6244, 6415, 6590, 6770, 6956, 7146, 7341, 7542, 7748, 7960, 8178,
8402, 8631, 8867, 9110, 9359, 9615, 9878, 10148, 10426, 10711, 11004,
11305, 11614, 11932, 12258, 12593, 12938, 13292, 13655, 14029, 14412, 14807,
15212, 15628, 16055, 16494, 16945, 17409, 17885, 18374, 18877, 19393, 19923,
20468, 21028, 21603, 22194, 22801, 23425, 24065, 24724, 25400, 26095, 26808,
27541, 28295, 29069, 29864, 30681, 31520, 32382};
static const uint16_t kSuppressionTableVirtualMic[128] = {
1024, 1006, 988, 970, 952, 935, 918, 902, 886, 870, 854, 839, 824, 809, 794,
780, 766, 752, 739, 726, 713, 700, 687, 675, 663, 651, 639, 628, 616, 605,
594, 584, 573, 563, 553, 543, 533, 524, 514, 505, 496, 487, 478, 470, 461,
453, 445, 437, 429, 421, 414, 406, 399, 392, 385, 378, 371, 364, 358, 351,
345, 339, 333, 327, 321, 315, 309, 304, 298, 293, 288, 283, 278, 273, 268,
263, 258, 254, 249, 244, 240, 236, 232, 227, 223, 219, 215, 211, 208, 204,
200, 197, 193, 190, 186, 183, 180, 176, 173, 170, 167, 164, 161, 158, 155,
153, 150, 147, 145, 142, 139, 137, 134, 132, 130, 127, 125, 123, 121, 118,
116, 114, 112, 110, 108, 106, 104, 102};
/* Table for target energy levels. Values in Q(-7)
* Matlab code
* targetLevelTable = fprintf('%d,\t%d,\t%d,\t%d,\n',
* round((32767*10.^(-(0:63)'/20)).^2*16/2^7) */
static const int32_t kTargetLevelTable[64] = {
134209536, 106606424, 84680493, 67264106, 53429779, 42440782, 33711911,
26778323, 21270778, 16895980, 13420954, 10660642, 8468049, 6726411,
5342978, 4244078, 3371191, 2677832, 2127078, 1689598, 1342095,
1066064, 846805, 672641, 534298, 424408, 337119, 267783,
212708, 168960, 134210, 106606, 84680, 67264, 53430,
42441, 33712, 26778, 21271, 16896, 13421, 10661,
8468, 6726, 5343, 4244, 3371, 2678, 2127,
1690, 1342, 1066, 847, 673, 534, 424,
337, 268, 213, 169, 134, 107, 85,
67};
} // namespace
int WebRtcAgc_AddMic(void* state,
int16_t* const* in_mic,
size_t num_bands,
size_t samples) {
int32_t nrg, max_nrg, sample, tmp32;
int32_t* ptr;
uint16_t targetGainIdx, gain;
size_t i;
int16_t n, L, tmp16, tmp_speech[16];
LegacyAgc* stt;
stt = reinterpret_cast<LegacyAgc*>(state);
if (stt->fs == 8000) {
L = 8;
if (samples != 80) {
return -1;
}
} else {
L = 16;
if (samples != 160) {
return -1;
}
}
/* apply slowly varying digital gain */
if (stt->micVol > stt->maxAnalog) {
/* `maxLevel` is strictly >= `micVol`, so this condition should be
* satisfied here, ensuring there is no divide-by-zero. */
RTC_DCHECK_GT(stt->maxLevel, stt->maxAnalog);
/* Q1 */
tmp16 = (int16_t)(stt->micVol - stt->maxAnalog);
tmp32 = (GAIN_TBL_LEN - 1) * tmp16;
tmp16 = (int16_t)(stt->maxLevel - stt->maxAnalog);
targetGainIdx = tmp32 / tmp16;
RTC_DCHECK_LT(targetGainIdx, GAIN_TBL_LEN);
/* Increment through the table towards the target gain.
* If micVol drops below maxAnalog, we allow the gain
* to be dropped immediately. */
if (stt->gainTableIdx < targetGainIdx) {
stt->gainTableIdx++;
} else if (stt->gainTableIdx > targetGainIdx) {
stt->gainTableIdx--;
}
/* Q12 */
gain = kGainTableAnalog[stt->gainTableIdx];
for (i = 0; i < samples; i++) {
size_t j;
for (j = 0; j < num_bands; ++j) {
sample = (in_mic[j][i] * gain) >> 12;
if (sample > 32767) {
in_mic[j][i] = 32767;
} else if (sample < -32768) {
in_mic[j][i] = -32768;
} else {
in_mic[j][i] = (int16_t)sample;
}
}
}
} else {
stt->gainTableIdx = 0;
}
/* compute envelope */
if (stt->inQueue > 0) {
ptr = stt->env[1];
} else {
ptr = stt->env[0];
}
for (i = 0; i < kNumSubframes; i++) {
/* iterate over samples */
max_nrg = 0;
for (n = 0; n < L; n++) {
nrg = in_mic[0][i * L + n] * in_mic[0][i * L + n];
if (nrg > max_nrg) {
max_nrg = nrg;
}
}
ptr[i] = max_nrg;
}
/* compute energy */
if (stt->inQueue > 0) {
ptr = stt->Rxx16w32_array[1];
} else {
ptr = stt->Rxx16w32_array[0];
}
for (i = 0; i < kNumSubframes / 2; i++) {
if (stt->fs == 16000) {
WebRtcSpl_DownsampleBy2(&in_mic[0][i * 32], 32, tmp_speech,
stt->filterState);
} else {
memcpy(tmp_speech, &in_mic[0][i * 16], 16 * sizeof(int16_t));
}
/* Compute energy in blocks of 16 samples */
ptr[i] = WebRtcSpl_DotProductWithScale(tmp_speech, tmp_speech, 16, 4);
}
/* update queue information */
if (stt->inQueue == 0) {
stt->inQueue = 1;
} else {
stt->inQueue = 2;
}
/* call VAD (use low band only) */
WebRtcAgc_ProcessVad(&stt->vadMic, in_mic[0], samples);
return 0;
}
int WebRtcAgc_AddFarend(void* state, const int16_t* in_far, size_t samples) {
LegacyAgc* stt = reinterpret_cast<LegacyAgc*>(state);
int err = WebRtcAgc_GetAddFarendError(state, samples);
if (err != 0)
return err;
return WebRtcAgc_AddFarendToDigital(&stt->digitalAgc, in_far, samples);
}
int WebRtcAgc_GetAddFarendError(void* state, size_t samples) {
LegacyAgc* stt;
stt = reinterpret_cast<LegacyAgc*>(state);
if (stt == nullptr)
return -1;
if (stt->fs == 8000) {
if (samples != 80)
return -1;
} else if (stt->fs == 16000 || stt->fs == 32000 || stt->fs == 48000) {
if (samples != 160)
return -1;
} else {
return -1;
}
return 0;
}
int WebRtcAgc_VirtualMic(void* agcInst,
int16_t* const* in_near,
size_t num_bands,
size_t samples,
int32_t micLevelIn,
int32_t* micLevelOut) {
int32_t tmpFlt, micLevelTmp, gainIdx;
uint16_t gain;
size_t ii, j;
LegacyAgc* stt;
uint32_t nrg;
size_t sampleCntr;
uint32_t frameNrg = 0;
uint32_t frameNrgLimit = 5500;
int16_t numZeroCrossing = 0;
const int16_t kZeroCrossingLowLim = 15;
const int16_t kZeroCrossingHighLim = 20;
stt = reinterpret_cast<LegacyAgc*>(agcInst);
/*
* Before applying gain decide if this is a low-level signal.
* The idea is that digital AGC will not adapt to low-level
* signals.
*/
if (stt->fs != 8000) {
frameNrgLimit = frameNrgLimit << 1;
}
frameNrg = (uint32_t)(in_near[0][0] * in_near[0][0]);
for (sampleCntr = 1; sampleCntr < samples; sampleCntr++) {
// increment frame energy if it is less than the limit
// the correct value of the energy is not important
if (frameNrg < frameNrgLimit) {
nrg = (uint32_t)(in_near[0][sampleCntr] * in_near[0][sampleCntr]);
frameNrg += nrg;
}
// Count the zero crossings
numZeroCrossing +=
((in_near[0][sampleCntr] ^ in_near[0][sampleCntr - 1]) < 0);
}
if ((frameNrg < 500) || (numZeroCrossing <= 5)) {
stt->lowLevelSignal = 1;
} else if (numZeroCrossing <= kZeroCrossingLowLim) {
stt->lowLevelSignal = 0;
} else if (frameNrg <= frameNrgLimit) {
stt->lowLevelSignal = 1;
} else if (numZeroCrossing >= kZeroCrossingHighLim) {
stt->lowLevelSignal = 1;
} else {
stt->lowLevelSignal = 0;
}
micLevelTmp = micLevelIn << stt->scale;
/* Set desired level */
gainIdx = stt->micVol;
if (stt->micVol > stt->maxAnalog) {
gainIdx = stt->maxAnalog;
}
if (micLevelTmp != stt->micRef) {
/* Something has happened with the physical level, restart. */
stt->micRef = micLevelTmp;
stt->micVol = 127;
*micLevelOut = 127;
stt->micGainIdx = 127;
gainIdx = 127;
}
/* Pre-process the signal to emulate the microphone level. */
/* Take one step at a time in the gain table. */
if (gainIdx > 127) {
gain = kGainTableVirtualMic[gainIdx - 128];
} else {
gain = kSuppressionTableVirtualMic[127 - gainIdx];
}
for (ii = 0; ii < samples; ii++) {
tmpFlt = (in_near[0][ii] * gain) >> 10;
if (tmpFlt > 32767) {
tmpFlt = 32767;
gainIdx--;
if (gainIdx >= 127) {
gain = kGainTableVirtualMic[gainIdx - 127];
} else {
gain = kSuppressionTableVirtualMic[127 - gainIdx];
}
}
if (tmpFlt < -32768) {
tmpFlt = -32768;
gainIdx--;
if (gainIdx >= 127) {
gain = kGainTableVirtualMic[gainIdx - 127];
} else {
gain = kSuppressionTableVirtualMic[127 - gainIdx];
}
}
in_near[0][ii] = (int16_t)tmpFlt;
for (j = 1; j < num_bands; ++j) {
tmpFlt = (in_near[j][ii] * gain) >> 10;
if (tmpFlt > 32767) {
tmpFlt = 32767;
}
if (tmpFlt < -32768) {
tmpFlt = -32768;
}
in_near[j][ii] = (int16_t)tmpFlt;
}
}
/* Set the level we (finally) used */
stt->micGainIdx = gainIdx;
// *micLevelOut = stt->micGainIdx;
*micLevelOut = stt->micGainIdx >> stt->scale;
/* Add to Mic as if it was the output from a true microphone */
if (WebRtcAgc_AddMic(agcInst, in_near, num_bands, samples) != 0) {
return -1;
}
return 0;
}
void WebRtcAgc_UpdateAgcThresholds(LegacyAgc* stt) {
int16_t tmp16;
/* Set analog target level in envelope dBOv scale */
tmp16 = (DIFF_REF_TO_ANALOG * stt->compressionGaindB) + ANALOG_TARGET_LEVEL_2;
tmp16 = WebRtcSpl_DivW32W16ResW16((int32_t)tmp16, ANALOG_TARGET_LEVEL);
stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN + tmp16;
if (stt->analogTarget < DIGITAL_REF_AT_0_COMP_GAIN) {
stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN;
}
if (stt->agcMode == kAgcModeFixedDigital) {
/* Adjust for different parameter interpretation in FixedDigital mode */
stt->analogTarget = stt->compressionGaindB;
}
/* Since the offset between RMS and ENV is not constant, we should make this
* into a
* table, but for now, we'll stick with a constant, tuned for the chosen
* analog
* target level.
*/
stt->targetIdx = ANALOG_TARGET_LEVEL + OFFSET_ENV_TO_RMS;
/* Analog adaptation limits */
/* analogTargetLevel = round((32767*10^(-targetIdx/20))^2*16/2^7) */
stt->analogTargetLevel =
kRxxBufferLen * kTargetLevelTable[stt->targetIdx]; /* ex. -20 dBov */
stt->startUpperLimit =
kRxxBufferLen * kTargetLevelTable[stt->targetIdx - 1]; /* -19 dBov */
stt->startLowerLimit =
kRxxBufferLen * kTargetLevelTable[stt->targetIdx + 1]; /* -21 dBov */
stt->upperPrimaryLimit =
kRxxBufferLen * kTargetLevelTable[stt->targetIdx - 2]; /* -18 dBov */
stt->lowerPrimaryLimit =
kRxxBufferLen * kTargetLevelTable[stt->targetIdx + 2]; /* -22 dBov */
stt->upperSecondaryLimit =
kRxxBufferLen * kTargetLevelTable[stt->targetIdx - 5]; /* -15 dBov */
stt->lowerSecondaryLimit =
kRxxBufferLen * kTargetLevelTable[stt->targetIdx + 5]; /* -25 dBov */
stt->upperLimit = stt->startUpperLimit;
stt->lowerLimit = stt->startLowerLimit;
}
void WebRtcAgc_SaturationCtrl(LegacyAgc* stt,
uint8_t* saturated,
int32_t* env) {
int16_t i, tmpW16;
/* Check if the signal is saturated */
for (i = 0; i < 10; i++) {
tmpW16 = (int16_t)(env[i] >> 20);
if (tmpW16 > 875) {
stt->envSum += tmpW16;
}
}
if (stt->envSum > 25000) {
*saturated = 1;
stt->envSum = 0;
}
/* stt->envSum *= 0.99; */
stt->envSum = (int16_t)((stt->envSum * 32440) >> 15);
}
void WebRtcAgc_ZeroCtrl(LegacyAgc* stt, int32_t* inMicLevel, int32_t* env) {
int16_t i;
int64_t tmp = 0;
int32_t midVal;
/* Is the input signal zero? */
for (i = 0; i < 10; i++) {
tmp += env[i];
}
/* Each block is allowed to have a few non-zero
* samples.
*/
if (tmp < 500) {
stt->msZero += 10;
} else {
stt->msZero = 0;
}
if (stt->muteGuardMs > 0) {
stt->muteGuardMs -= 10;
}
if (stt->msZero > 500) {
stt->msZero = 0;
/* Increase microphone level only if it's less than 50% */
midVal = (stt->maxAnalog + stt->minLevel + 1) / 2;
if (*inMicLevel < midVal) {
/* *inMicLevel *= 1.1; */
*inMicLevel = (1126 * *inMicLevel) >> 10;
/* Reduces risk of a muted mic repeatedly triggering excessive levels due
* to zero signal detection. */
*inMicLevel = WEBRTC_SPL_MIN(*inMicLevel, stt->zeroCtrlMax);
stt->micVol = *inMicLevel;
}
stt->activeSpeech = 0;
stt->Rxx16_LPw32Max = 0;
/* The AGC has a tendency (due to problems with the VAD parameters), to
* vastly increase the volume after a muting event. This timer prevents
* upwards adaptation for a short period. */
stt->muteGuardMs = kMuteGuardTimeMs;
}
}
void WebRtcAgc_SpeakerInactiveCtrl(LegacyAgc* stt) {
/* Check if the near end speaker is inactive.
* If that is the case the VAD threshold is
* increased since the VAD speech model gets
* more sensitive to any sound after a long
* silence.
*/
int32_t tmp32;
int16_t vadThresh;
if (stt->vadMic.stdLongTerm < 2500) {
stt->vadThreshold = 1500;
} else {
vadThresh = kNormalVadThreshold;
if (stt->vadMic.stdLongTerm < 4500) {
/* Scale between min and max threshold */
vadThresh += (4500 - stt->vadMic.stdLongTerm) / 2;
}
/* stt->vadThreshold = (31 * stt->vadThreshold + vadThresh) / 32; */
tmp32 = vadThresh + 31 * stt->vadThreshold;
stt->vadThreshold = (int16_t)(tmp32 >> 5);
}
}
void WebRtcAgc_ExpCurve(int16_t volume, int16_t* index) {
// volume in Q14
// index in [0-7]
/* 8 different curves */
if (volume > 5243) {
if (volume > 7864) {
if (volume > 12124) {
*index = 7;
} else {
*index = 6;
}
} else {
if (volume > 6554) {
*index = 5;
} else {
*index = 4;
}
}
} else {
if (volume > 2621) {
if (volume > 3932) {
*index = 3;
} else {
*index = 2;
}
} else {
if (volume > 1311) {
*index = 1;
} else {
*index = 0;
}
}
}
}
int32_t WebRtcAgc_ProcessAnalog(void* state,
int32_t inMicLevel,
int32_t* outMicLevel,
int16_t vadLogRatio,
int16_t echo,
uint8_t* saturationWarning) {
uint32_t tmpU32;
int32_t Rxx16w32, tmp32;
int32_t inMicLevelTmp, lastMicVol;
int16_t i;
uint8_t saturated = 0;
LegacyAgc* stt;
stt = reinterpret_cast<LegacyAgc*>(state);
inMicLevelTmp = inMicLevel << stt->scale;
if (inMicLevelTmp > stt->maxAnalog) {
return -1;
} else if (inMicLevelTmp < stt->minLevel) {
return -1;
}
if (stt->firstCall == 0) {
int32_t tmpVol;
stt->firstCall = 1;
tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9;
tmpVol = (stt->minLevel + tmp32);
/* If the mic level is very low at start, increase it! */
if ((inMicLevelTmp < tmpVol) && (stt->agcMode == kAgcModeAdaptiveAnalog)) {
inMicLevelTmp = tmpVol;
}
stt->micVol = inMicLevelTmp;
}
/* Set the mic level to the previous output value if there is digital input
* gain */
if ((inMicLevelTmp == stt->maxAnalog) && (stt->micVol > stt->maxAnalog)) {
inMicLevelTmp = stt->micVol;
}
/* If the mic level was manually changed to a very low value raise it! */
if ((inMicLevelTmp != stt->micVol) && (inMicLevelTmp < stt->minOutput)) {
tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9;
inMicLevelTmp = (stt->minLevel + tmp32);
stt->micVol = inMicLevelTmp;
}
if (inMicLevelTmp != stt->micVol) {
if (inMicLevel == stt->lastInMicLevel) {
// We requested a volume adjustment, but it didn't occur. This is
// probably due to a coarse quantization of the volume slider.
// Restore the requested value to prevent getting stuck.
inMicLevelTmp = stt->micVol;
} else {
// As long as the value changed, update to match.
stt->micVol = inMicLevelTmp;
}
}
if (inMicLevelTmp > stt->maxLevel) {
// Always allow the user to raise the volume above the maxLevel.
stt->maxLevel = inMicLevelTmp;
}
// Store last value here, after we've taken care of manual updates etc.
stt->lastInMicLevel = inMicLevel;
lastMicVol = stt->micVol;
/* Checks if the signal is saturated. Also a check if individual samples
* are larger than 12000 is done. If they are the counter for increasing
* the volume level is set to -100ms
*/
WebRtcAgc_SaturationCtrl(stt, &saturated, stt->env[0]);
/* The AGC is always allowed to lower the level if the signal is saturated */
if (saturated == 1) {
/* Lower the recording level
* Rxx160_LP is adjusted down because it is so slow it could
* cause the AGC to make wrong decisions. */
/* stt->Rxx160_LPw32 *= 0.875; */
stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 8) * 7;
stt->zeroCtrlMax = stt->micVol;
/* stt->micVol *= 0.903; */
tmp32 = inMicLevelTmp - stt->minLevel;
tmpU32 = WEBRTC_SPL_UMUL(29591, (uint32_t)(tmp32));
stt->micVol = (tmpU32 >> 15) + stt->minLevel;
if (stt->micVol > lastMicVol - 2) {
stt->micVol = lastMicVol - 2;
}
inMicLevelTmp = stt->micVol;
if (stt->micVol < stt->minOutput) {
*saturationWarning = 1;
}
/* Reset counter for decrease of volume level to avoid
* decreasing too much. The saturation control can still
* lower the level if needed. */
stt->msTooHigh = -100;
/* Enable the control mechanism to ensure that our measure,
* Rxx160_LP, is in the correct range. This must be done since
* the measure is very slow. */
stt->activeSpeech = 0;
stt->Rxx16_LPw32Max = 0;
/* Reset to initial values */
stt->msecSpeechInnerChange = kMsecSpeechInner;
stt->msecSpeechOuterChange = kMsecSpeechOuter;
stt->changeToSlowMode = 0;
stt->muteGuardMs = 0;
stt->upperLimit = stt->startUpperLimit;
stt->lowerLimit = stt->startLowerLimit;
}
/* Check if the input speech is zero. If so the mic volume
* is increased. On some computers the input is zero up as high
* level as 17% */
WebRtcAgc_ZeroCtrl(stt, &inMicLevelTmp, stt->env[0]);
/* Check if the near end speaker is inactive.
* If that is the case the VAD threshold is
* increased since the VAD speech model gets
* more sensitive to any sound after a long
* silence.
*/
WebRtcAgc_SpeakerInactiveCtrl(stt);
for (i = 0; i < 5; i++) {
/* Computed on blocks of 16 samples */
Rxx16w32 = stt->Rxx16w32_array[0][i];
/* Rxx160w32 in Q(-7) */
tmp32 = (Rxx16w32 - stt->Rxx16_vectorw32[stt->Rxx16pos]) >> 3;
stt->Rxx160w32 = stt->Rxx160w32 + tmp32;
stt->Rxx16_vectorw32[stt->Rxx16pos] = Rxx16w32;
/* Circular buffer */
stt->Rxx16pos++;
if (stt->Rxx16pos == kRxxBufferLen) {
stt->Rxx16pos = 0;
}
/* Rxx16_LPw32 in Q(-4) */
tmp32 = (Rxx16w32 - stt->Rxx16_LPw32) >> kAlphaShortTerm;
stt->Rxx16_LPw32 = (stt->Rxx16_LPw32) + tmp32;
if (vadLogRatio > stt->vadThreshold) {
/* Speech detected! */
/* Check if Rxx160_LP is in the correct range. If
* it is too high/low then we set it to the maximum of
* Rxx16_LPw32 during the first 200ms of speech.
*/
if (stt->activeSpeech < 250) {
stt->activeSpeech += 2;
if (stt->Rxx16_LPw32 > stt->Rxx16_LPw32Max) {
stt->Rxx16_LPw32Max = stt->Rxx16_LPw32;
}
} else if (stt->activeSpeech == 250) {
stt->activeSpeech += 2;
tmp32 = stt->Rxx16_LPw32Max >> 3;
stt->Rxx160_LPw32 = tmp32 * kRxxBufferLen;
}
tmp32 = (stt->Rxx160w32 - stt->Rxx160_LPw32) >> kAlphaLongTerm;
stt->Rxx160_LPw32 = stt->Rxx160_LPw32 + tmp32;
if (stt->Rxx160_LPw32 > stt->upperSecondaryLimit) {
stt->msTooHigh += 2;
stt->msTooLow = 0;
stt->changeToSlowMode = 0;
if (stt->msTooHigh > stt->msecSpeechOuterChange) {
stt->msTooHigh = 0;
/* Lower the recording level */
/* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */
tmp32 = stt->Rxx160_LPw32 >> 6;
stt->Rxx160_LPw32 = tmp32 * 53;
/* Reduce the max gain to avoid excessive oscillation
* (but never drop below the maximum analog level).
*/
stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16;
stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog);
stt->zeroCtrlMax = stt->micVol;
/* 0.95 in Q15 */
tmp32 = inMicLevelTmp - stt->minLevel;
tmpU32 = WEBRTC_SPL_UMUL(31130, (uint32_t)(tmp32));
stt->micVol = (tmpU32 >> 15) + stt->minLevel;
if (stt->micVol > lastMicVol - 1) {
stt->micVol = lastMicVol - 1;
}
inMicLevelTmp = stt->micVol;
/* Enable the control mechanism to ensure that our measure,
* Rxx160_LP, is in the correct range.
*/
stt->activeSpeech = 0;
stt->Rxx16_LPw32Max = 0;
}
} else if (stt->Rxx160_LPw32 > stt->upperLimit) {
stt->msTooHigh += 2;
stt->msTooLow = 0;
stt->changeToSlowMode = 0;
if (stt->msTooHigh > stt->msecSpeechInnerChange) {
/* Lower the recording level */
stt->msTooHigh = 0;
/* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */
stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 53;
/* Reduce the max gain to avoid excessive oscillation
* (but never drop below the maximum analog level).
*/
stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16;
stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog);
stt->zeroCtrlMax = stt->micVol;
/* 0.965 in Q15 */
tmp32 = inMicLevelTmp - stt->minLevel;
tmpU32 =
WEBRTC_SPL_UMUL(31621, (uint32_t)(inMicLevelTmp - stt->minLevel));
stt->micVol = (tmpU32 >> 15) + stt->minLevel;
if (stt->micVol > lastMicVol - 1) {
stt->micVol = lastMicVol - 1;
}
inMicLevelTmp = stt->micVol;
}
} else if (stt->Rxx160_LPw32 < stt->lowerSecondaryLimit) {
stt->msTooHigh = 0;
stt->changeToSlowMode = 0;
stt->msTooLow += 2;
if (stt->msTooLow > stt->msecSpeechOuterChange) {
/* Raise the recording level */
int16_t index, weightFIX;
int16_t volNormFIX = 16384; // =1 in Q14.
stt->msTooLow = 0;
/* Normalize the volume level */
tmp32 = (inMicLevelTmp - stt->minLevel) << 14;
if (stt->maxInit != stt->minLevel) {
volNormFIX = tmp32 / (stt->maxInit - stt->minLevel);
}
/* Find correct curve */
WebRtcAgc_ExpCurve(volNormFIX, &index);
/* Compute weighting factor for the volume increase, 32^(-2*X)/2+1.05
*/
weightFIX =
kOffset1[index] - (int16_t)((kSlope1[index] * volNormFIX) >> 13);
/* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */
stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67;
tmp32 = inMicLevelTmp - stt->minLevel;
tmpU32 =
((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel));
stt->micVol = (tmpU32 >> 14) + stt->minLevel;
if (stt->micVol < lastMicVol + 2) {
stt->micVol = lastMicVol + 2;
}
inMicLevelTmp = stt->micVol;
}
} else if (stt->Rxx160_LPw32 < stt->lowerLimit) {
stt->msTooHigh = 0;
stt->changeToSlowMode = 0;
stt->msTooLow += 2;
if (stt->msTooLow > stt->msecSpeechInnerChange) {
/* Raise the recording level */
int16_t index, weightFIX;
int16_t volNormFIX = 16384; // =1 in Q14.
stt->msTooLow = 0;
/* Normalize the volume level */
tmp32 = (inMicLevelTmp - stt->minLevel) << 14;
if (stt->maxInit != stt->minLevel) {
volNormFIX = tmp32 / (stt->maxInit - stt->minLevel);
}
/* Find correct curve */
WebRtcAgc_ExpCurve(volNormFIX, &index);
/* Compute weighting factor for the volume increase, (3.^(-2.*X))/8+1
*/
weightFIX =
kOffset2[index] - (int16_t)((kSlope2[index] * volNormFIX) >> 13);
/* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */
stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67;
tmp32 = inMicLevelTmp - stt->minLevel;
tmpU32 =
((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel));
stt->micVol = (tmpU32 >> 14) + stt->minLevel;
if (stt->micVol < lastMicVol + 1) {
stt->micVol = lastMicVol + 1;
}
inMicLevelTmp = stt->micVol;
}
} else {
/* The signal is inside the desired range which is:
* lowerLimit < Rxx160_LP/640 < upperLimit
*/
if (stt->changeToSlowMode > 4000) {
stt->msecSpeechInnerChange = 1000;
stt->msecSpeechOuterChange = 500;
stt->upperLimit = stt->upperPrimaryLimit;
stt->lowerLimit = stt->lowerPrimaryLimit;
} else {
stt->changeToSlowMode += 2; // in milliseconds
}
stt->msTooLow = 0;
stt->msTooHigh = 0;
stt->micVol = inMicLevelTmp;
}
}
}
/* Ensure gain is not increased in presence of echo or after a mute event
* (but allow the zeroCtrl() increase on the frame of a mute detection).
*/
if (echo == 1 ||
(stt->muteGuardMs > 0 && stt->muteGuardMs < kMuteGuardTimeMs)) {
if (stt->micVol > lastMicVol) {
stt->micVol = lastMicVol;
}
}
/* limit the gain */
if (stt->micVol > stt->maxLevel) {
stt->micVol = stt->maxLevel;
} else if (stt->micVol < stt->minOutput) {
stt->micVol = stt->minOutput;
}
*outMicLevel = WEBRTC_SPL_MIN(stt->micVol, stt->maxAnalog) >> stt->scale;
return 0;
}
int WebRtcAgc_Analyze(void* agcInst,
const int16_t* const* in_near,
size_t num_bands,
size_t samples,
int32_t inMicLevel,
int32_t* outMicLevel,
int16_t echo,
uint8_t* saturationWarning,
int32_t gains[11]) {
LegacyAgc* stt = reinterpret_cast<LegacyAgc*>(agcInst);
if (stt == nullptr) {
return -1;
}
if (stt->fs == 8000) {
if (samples != 80) {
return -1;
}
} else if (stt->fs == 16000 || stt->fs == 32000 || stt->fs == 48000) {
if (samples != 160) {
return -1;
}
} else {
return -1;
}
*saturationWarning = 0;
// TODO(minyue): PUT IN RANGE CHECKING FOR INPUT LEVELS
*outMicLevel = inMicLevel;
int32_t error =
WebRtcAgc_ComputeDigitalGains(&stt->digitalAgc, in_near, num_bands,
stt->fs, stt->lowLevelSignal, gains);
if (error == -1) {
return -1;
}
if (stt->agcMode < kAgcModeFixedDigital &&
(stt->lowLevelSignal == 0 || stt->agcMode != kAgcModeAdaptiveDigital)) {
if (WebRtcAgc_ProcessAnalog(agcInst, inMicLevel, outMicLevel,
stt->vadMic.logRatio, echo,
saturationWarning) == -1) {
return -1;
}
}
/* update queue */
if (stt->inQueue > 1) {
memcpy(stt->env[0], stt->env[1], 10 * sizeof(int32_t));
memcpy(stt->Rxx16w32_array[0], stt->Rxx16w32_array[1], 5 * sizeof(int32_t));
}
if (stt->inQueue > 0) {
stt->inQueue--;
}
return 0;
}
int WebRtcAgc_Process(const void* agcInst,
const int32_t gains[11],
const int16_t* const* in_near,
size_t num_bands,
int16_t* const* out) {
const LegacyAgc* stt = (const LegacyAgc*)agcInst;
return WebRtcAgc_ApplyDigitalGains(gains, num_bands, stt->fs, in_near, out);
}
int WebRtcAgc_set_config(void* agcInst, WebRtcAgcConfig agcConfig) {
LegacyAgc* stt;
stt = reinterpret_cast<LegacyAgc*>(agcInst);
if (stt == nullptr) {
return -1;
}
if (stt->initFlag != kInitCheck) {
stt->lastError = AGC_UNINITIALIZED_ERROR;
return -1;
}
if (agcConfig.limiterEnable != kAgcFalse &&
agcConfig.limiterEnable != kAgcTrue) {
stt->lastError = AGC_BAD_PARAMETER_ERROR;
return -1;
}
stt->limiterEnable = agcConfig.limiterEnable;
stt->compressionGaindB = agcConfig.compressionGaindB;
if ((agcConfig.targetLevelDbfs < 0) || (agcConfig.targetLevelDbfs > 31)) {
stt->lastError = AGC_BAD_PARAMETER_ERROR;
return -1;
}
stt->targetLevelDbfs = agcConfig.targetLevelDbfs;
if (stt->agcMode == kAgcModeFixedDigital) {
/* Adjust for different parameter interpretation in FixedDigital mode */
stt->compressionGaindB += agcConfig.targetLevelDbfs;
}
/* Update threshold levels for analog adaptation */
WebRtcAgc_UpdateAgcThresholds(stt);
/* Recalculate gain table */
if (WebRtcAgc_CalculateGainTable(
&(stt->digitalAgc.gainTable[0]), stt->compressionGaindB,
stt->targetLevelDbfs, stt->limiterEnable, stt->analogTarget) == -1) {
return -1;
}
/* Store the config in a WebRtcAgcConfig */
stt->usedConfig.compressionGaindB = agcConfig.compressionGaindB;
stt->usedConfig.limiterEnable = agcConfig.limiterEnable;
stt->usedConfig.targetLevelDbfs = agcConfig.targetLevelDbfs;
return 0;
}
int WebRtcAgc_get_config(void* agcInst, WebRtcAgcConfig* config) {
LegacyAgc* stt;
stt = reinterpret_cast<LegacyAgc*>(agcInst);
if (stt == nullptr) {
return -1;
}
if (config == nullptr) {
stt->lastError = AGC_NULL_POINTER_ERROR;
return -1;
}
if (stt->initFlag != kInitCheck) {
stt->lastError = AGC_UNINITIALIZED_ERROR;
return -1;
}
config->limiterEnable = stt->usedConfig.limiterEnable;
config->targetLevelDbfs = stt->usedConfig.targetLevelDbfs;
config->compressionGaindB = stt->usedConfig.compressionGaindB;
return 0;
}
void* WebRtcAgc_Create() {
LegacyAgc* stt = static_cast<LegacyAgc*>(malloc(sizeof(LegacyAgc)));
stt->initFlag = 0;
stt->lastError = 0;
return stt;
}
void WebRtcAgc_Free(void* state) {
LegacyAgc* stt;
stt = reinterpret_cast<LegacyAgc*>(state);
free(stt);
}
/* minLevel - Minimum volume level
* maxLevel - Maximum volume level
*/
int WebRtcAgc_Init(void* agcInst,
int32_t minLevel,
int32_t maxLevel,
int16_t agcMode,
uint32_t fs) {
int32_t max_add, tmp32;
int16_t i;
int tmpNorm;
LegacyAgc* stt;
/* typecast state pointer */
stt = reinterpret_cast<LegacyAgc*>(agcInst);
if (WebRtcAgc_InitDigital(&stt->digitalAgc, agcMode) != 0) {
stt->lastError = AGC_UNINITIALIZED_ERROR;
return -1;
}
/* Analog AGC variables */
stt->envSum = 0;
/* mode = 0 - Only saturation protection
* 1 - Analog Automatic Gain Control [-targetLevelDbfs (default -3
* dBOv)]
* 2 - Digital Automatic Gain Control [-targetLevelDbfs (default -3
* dBOv)]
* 3 - Fixed Digital Gain [compressionGaindB (default 8 dB)]
*/
if (agcMode < kAgcModeUnchanged || agcMode > kAgcModeFixedDigital) {
return -1;
}
stt->agcMode = agcMode;
stt->fs = fs;
/* initialize input VAD */
WebRtcAgc_InitVad(&stt->vadMic);
/* If the volume range is smaller than 0-256 then
* the levels are shifted up to Q8-domain */
tmpNorm = WebRtcSpl_NormU32((uint32_t)maxLevel);
stt->scale = tmpNorm - 23;
if (stt->scale < 0) {
stt->scale = 0;
}
// TODO(bjornv): Investigate if we really need to scale up a small range now
// when we have
// a guard against zero-increments. For now, we do not support scale up (scale
// = 0).
stt->scale = 0;
maxLevel <<= stt->scale;
minLevel <<= stt->scale;
/* Make minLevel and maxLevel static in AdaptiveDigital */
if (stt->agcMode == kAgcModeAdaptiveDigital) {
minLevel = 0;
maxLevel = 255;
stt->scale = 0;
}
/* The maximum supplemental volume range is based on a vague idea
* of how much lower the gain will be than the real analog gain. */
max_add = (maxLevel - minLevel) / 4;
/* Minimum/maximum volume level that can be set */
stt->minLevel = minLevel;
stt->maxAnalog = maxLevel;
stt->maxLevel = maxLevel + max_add;
stt->maxInit = stt->maxLevel;
stt->zeroCtrlMax = stt->maxAnalog;
stt->lastInMicLevel = 0;
/* Initialize micVol parameter */
stt->micVol = stt->maxAnalog;
if (stt->agcMode == kAgcModeAdaptiveDigital) {
stt->micVol = 127; /* Mid-point of mic level */
}
stt->micRef = stt->micVol;
stt->micGainIdx = 127;
/* Minimum output volume is 4% higher than the available lowest volume level
*/
tmp32 = ((stt->maxLevel - stt->minLevel) * 10) >> 8;
stt->minOutput = (stt->minLevel + tmp32);
stt->msTooLow = 0;
stt->msTooHigh = 0;
stt->changeToSlowMode = 0;
stt->firstCall = 0;
stt->msZero = 0;
stt->muteGuardMs = 0;
stt->gainTableIdx = 0;
stt->msecSpeechInnerChange = kMsecSpeechInner;
stt->msecSpeechOuterChange = kMsecSpeechOuter;
stt->activeSpeech = 0;
stt->Rxx16_LPw32Max = 0;
stt->vadThreshold = kNormalVadThreshold;
stt->inActive = 0;
for (i = 0; i < kRxxBufferLen; i++) {
stt->Rxx16_vectorw32[i] = (int32_t)1000; /* -54dBm0 */
}
stt->Rxx160w32 = 125 * kRxxBufferLen; /* (stt->Rxx16_vectorw32[0]>>3) = 125 */
stt->Rxx16pos = 0;
stt->Rxx16_LPw32 = (int32_t)16284; /* Q(-4) */
for (i = 0; i < 5; i++) {
stt->Rxx16w32_array[0][i] = 0;
}
for (i = 0; i < 10; i++) {
stt->env[0][i] = 0;
stt->env[1][i] = 0;
}
stt->inQueue = 0;
WebRtcSpl_MemSetW32(stt->filterState, 0, 8);
stt->initFlag = kInitCheck;
// Default config settings.
stt->defaultConfig.limiterEnable = kAgcTrue;
stt->defaultConfig.targetLevelDbfs = AGC_DEFAULT_TARGET_LEVEL;
stt->defaultConfig.compressionGaindB = AGC_DEFAULT_COMP_GAIN;
if (WebRtcAgc_set_config(stt, stt->defaultConfig) == -1) {
stt->lastError = AGC_UNSPECIFIED_ERROR;
return -1;
}
stt->Rxx160_LPw32 = stt->analogTargetLevel; // Initialize rms value
stt->lowLevelSignal = 0;
/* Only positive values are allowed that are not too large */
if ((minLevel >= maxLevel) || (maxLevel & 0xFC000000)) {
return -1;
} else {
return 0;
}
}
} // namespace webrtc
|