1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc/loudness_histogram.h"
#include <string.h>
#include <cmath>
#include "rtc_base/checks.h"
namespace webrtc {
static const double kHistBinCenters[] = {
7.59621091765857e-02, 9.02036021061016e-02, 1.07115112009343e-01,
1.27197217770508e-01, 1.51044347572047e-01, 1.79362373905283e-01,
2.12989507320644e-01, 2.52921107370304e-01, 3.00339145144454e-01,
3.56647189489147e-01, 4.23511952494003e-01, 5.02912623991786e-01,
5.97199455365749e-01, 7.09163326739184e-01, 8.42118356728544e-01,
1.00000000000000e+00, 1.18748153630660e+00, 1.41011239906908e+00,
1.67448243801153e+00, 1.98841697800836e+00, 2.36120844786349e+00,
2.80389143520905e+00, 3.32956930911896e+00, 3.95380207843188e+00,
4.69506696634852e+00, 5.57530533426190e+00, 6.62057214370769e+00,
7.86180718043869e+00, 9.33575086877358e+00, 1.10860317842269e+01,
1.31644580546776e+01, 1.56325508754123e+01, 1.85633655299256e+01,
2.20436538184971e+01, 2.61764319021997e+01, 3.10840295702492e+01,
3.69117111886792e+01, 4.38319755100383e+01, 5.20496616180135e+01,
6.18080121423973e+01, 7.33958732149108e+01, 8.71562442838066e+01,
1.03496430860848e+02, 1.22900100720889e+02, 1.45941600416277e+02,
1.73302955873365e+02, 2.05794060286978e+02, 2.44376646872353e+02,
2.90192756065437e+02, 3.44598539797631e+02, 4.09204403447902e+02,
4.85922673669740e+02, 5.77024203055553e+02, 6.85205587130498e+02,
8.13668983291589e+02, 9.66216894324125e+02, 1.14736472207740e+03,
1.36247442287647e+03, 1.61791322085579e+03, 1.92124207711260e+03,
2.28143949334655e+03, 2.70916727454970e+03, 3.21708611729384e+03,
3.82023036499473e+03, 4.53645302286906e+03, 5.38695420497926e+03,
6.39690865534207e+03, 7.59621091765857e+03, 9.02036021061016e+03,
1.07115112009343e+04, 1.27197217770508e+04, 1.51044347572047e+04,
1.79362373905283e+04, 2.12989507320644e+04, 2.52921107370304e+04,
3.00339145144454e+04, 3.56647189489147e+04};
static const double kProbQDomain = 1024.0;
// Loudness of -15 dB (smallest expected loudness) in log domain,
// loudness_db = 13.5 * log10(rms);
static const double kLogDomainMinBinCenter = -2.57752062648587;
// Loudness step of 1 dB in log domain
static const double kLogDomainStepSizeInverse = 5.81954605750359;
static const int kTransientWidthThreshold = 7;
static const double kLowProbabilityThreshold = 0.2;
static const int kLowProbThresholdQ10 =
static_cast<int>(kLowProbabilityThreshold * kProbQDomain);
LoudnessHistogram::LoudnessHistogram()
: num_updates_(0),
audio_content_q10_(0),
bin_count_q10_(),
activity_probability_(),
hist_bin_index_(),
buffer_index_(0),
buffer_is_full_(false),
len_circular_buffer_(0),
len_high_activity_(0) {
static_assert(
kHistSize == sizeof(kHistBinCenters) / sizeof(kHistBinCenters[0]),
"histogram bin centers incorrect size");
}
LoudnessHistogram::LoudnessHistogram(int window_size)
: num_updates_(0),
audio_content_q10_(0),
bin_count_q10_(),
activity_probability_(new int[window_size]),
hist_bin_index_(new int[window_size]),
buffer_index_(0),
buffer_is_full_(false),
len_circular_buffer_(window_size),
len_high_activity_(0) {}
LoudnessHistogram::~LoudnessHistogram() {}
void LoudnessHistogram::Update(double rms, double activity_probaility) {
// If circular histogram is activated then remove the oldest entry.
if (len_circular_buffer_ > 0)
RemoveOldestEntryAndUpdate();
// Find the corresponding bin.
int hist_index = GetBinIndex(rms);
// To Q10 domain.
int prob_q10 =
static_cast<int16_t>(floor(activity_probaility * kProbQDomain));
InsertNewestEntryAndUpdate(prob_q10, hist_index);
}
// Doing nothing if buffer is not full, yet.
void LoudnessHistogram::RemoveOldestEntryAndUpdate() {
RTC_DCHECK_GT(len_circular_buffer_, 0);
// Do nothing if circular buffer is not full.
if (!buffer_is_full_)
return;
int oldest_prob = activity_probability_[buffer_index_];
int oldest_hist_index = hist_bin_index_[buffer_index_];
UpdateHist(-oldest_prob, oldest_hist_index);
}
void LoudnessHistogram::RemoveTransient() {
// Don't expect to be here if high-activity region is longer than
// `kTransientWidthThreshold` or there has not been any transient.
RTC_DCHECK_LE(len_high_activity_, kTransientWidthThreshold);
int index =
(buffer_index_ > 0) ? (buffer_index_ - 1) : len_circular_buffer_ - 1;
while (len_high_activity_ > 0) {
UpdateHist(-activity_probability_[index], hist_bin_index_[index]);
activity_probability_[index] = 0;
index = (index > 0) ? (index - 1) : (len_circular_buffer_ - 1);
len_high_activity_--;
}
}
void LoudnessHistogram::InsertNewestEntryAndUpdate(int activity_prob_q10,
int hist_index) {
// Update the circular buffer if it is enabled.
if (len_circular_buffer_ > 0) {
// Removing transient.
if (activity_prob_q10 <= kLowProbThresholdQ10) {
// Lower than threshold probability, set it to zero.
activity_prob_q10 = 0;
// Check if this has been a transient.
if (len_high_activity_ <= kTransientWidthThreshold)
RemoveTransient(); // Remove this transient.
len_high_activity_ = 0;
} else if (len_high_activity_ <= kTransientWidthThreshold) {
len_high_activity_++;
}
// Updating the circular buffer.
activity_probability_[buffer_index_] = activity_prob_q10;
hist_bin_index_[buffer_index_] = hist_index;
// Increment the buffer index and check for wrap-around.
buffer_index_++;
if (buffer_index_ >= len_circular_buffer_) {
buffer_index_ = 0;
buffer_is_full_ = true;
}
}
num_updates_++;
if (num_updates_ < 0)
num_updates_--;
UpdateHist(activity_prob_q10, hist_index);
}
void LoudnessHistogram::UpdateHist(int activity_prob_q10, int hist_index) {
bin_count_q10_[hist_index] += activity_prob_q10;
audio_content_q10_ += activity_prob_q10;
}
double LoudnessHistogram::AudioContent() const {
return audio_content_q10_ / kProbQDomain;
}
LoudnessHistogram* LoudnessHistogram::Create() {
return new LoudnessHistogram;
}
LoudnessHistogram* LoudnessHistogram::Create(int window_size) {
if (window_size < 0)
return nullptr;
return new LoudnessHistogram(window_size);
}
void LoudnessHistogram::Reset() {
// Reset the histogram, audio-content and number of updates.
memset(bin_count_q10_, 0, sizeof(bin_count_q10_));
audio_content_q10_ = 0;
num_updates_ = 0;
// Empty the circular buffer.
buffer_index_ = 0;
buffer_is_full_ = false;
len_high_activity_ = 0;
}
int LoudnessHistogram::GetBinIndex(double rms) {
// First exclude overload cases.
if (rms <= kHistBinCenters[0]) {
return 0;
} else if (rms >= kHistBinCenters[kHistSize - 1]) {
return kHistSize - 1;
} else {
// The quantizer is uniform in log domain. Alternatively we could do binary
// search in linear domain.
double rms_log = log(rms);
int index = static_cast<int>(
floor((rms_log - kLogDomainMinBinCenter) * kLogDomainStepSizeInverse));
// The final decision is in linear domain.
double b = 0.5 * (kHistBinCenters[index] + kHistBinCenters[index + 1]);
if (rms > b) {
return index + 1;
}
return index;
}
}
double LoudnessHistogram::CurrentRms() const {
double p;
double mean_val = 0;
if (audio_content_q10_ > 0) {
double p_total_inverse = 1. / static_cast<double>(audio_content_q10_);
for (int n = 0; n < kHistSize; n++) {
p = static_cast<double>(bin_count_q10_[n]) * p_total_inverse;
mean_val += p * kHistBinCenters[n];
}
} else {
mean_val = kHistBinCenters[0];
}
return mean_val;
}
} // namespace webrtc
|