1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/clipping_predictor.h"
#include <algorithm>
#include <memory>
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc2/clipping_predictor_level_buffer.h"
#include "modules/audio_processing/agc2/gain_map_internal.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
constexpr int kClippingPredictorMaxGainChange = 15;
// Returns an input volume in the [`min_input_volume`, `max_input_volume`] range
// that reduces `gain_error_db`, which is a gain error estimated when
// `input_volume` was applied, according to a fixed gain map.
int ComputeVolumeUpdate(int gain_error_db,
int input_volume,
int min_input_volume,
int max_input_volume) {
RTC_DCHECK_GE(input_volume, 0);
RTC_DCHECK_LE(input_volume, max_input_volume);
if (gain_error_db == 0) {
return input_volume;
}
int new_volume = input_volume;
if (gain_error_db > 0) {
while (kGainMap[new_volume] - kGainMap[input_volume] < gain_error_db &&
new_volume < max_input_volume) {
++new_volume;
}
} else {
while (kGainMap[new_volume] - kGainMap[input_volume] > gain_error_db &&
new_volume > min_input_volume) {
--new_volume;
}
}
return new_volume;
}
float ComputeCrestFactor(const ClippingPredictorLevelBuffer::Level& level) {
const float crest_factor =
FloatS16ToDbfs(level.max) - FloatS16ToDbfs(std::sqrt(level.average));
return crest_factor;
}
// Crest factor-based clipping prediction and clipped level step estimation.
class ClippingEventPredictor : public ClippingPredictor {
public:
// ClippingEventPredictor with `num_channels` channels (limited to values
// higher than zero); window size `window_length` and reference window size
// `reference_window_length` (both referring to the number of frames in the
// respective sliding windows and limited to values higher than zero);
// reference window delay `reference_window_delay` (delay in frames, limited
// to values zero and higher with an additional requirement of
// `window_length` < `reference_window_length` + reference_window_delay`);
// and an estimation peak threshold `clipping_threshold` and a crest factor
// drop threshold `crest_factor_margin` (both in dB).
ClippingEventPredictor(int num_channels,
int window_length,
int reference_window_length,
int reference_window_delay,
float clipping_threshold,
float crest_factor_margin)
: window_length_(window_length),
reference_window_length_(reference_window_length),
reference_window_delay_(reference_window_delay),
clipping_threshold_(clipping_threshold),
crest_factor_margin_(crest_factor_margin) {
RTC_DCHECK_GT(num_channels, 0);
RTC_DCHECK_GT(window_length, 0);
RTC_DCHECK_GT(reference_window_length, 0);
RTC_DCHECK_GE(reference_window_delay, 0);
RTC_DCHECK_GT(reference_window_length + reference_window_delay,
window_length);
const int buffer_length = GetMinFramesProcessed();
RTC_DCHECK_GT(buffer_length, 0);
for (int i = 0; i < num_channels; ++i) {
ch_buffers_.push_back(
std::make_unique<ClippingPredictorLevelBuffer>(buffer_length));
}
}
ClippingEventPredictor(const ClippingEventPredictor&) = delete;
ClippingEventPredictor& operator=(const ClippingEventPredictor&) = delete;
~ClippingEventPredictor() {}
void Reset() {
const int num_channels = ch_buffers_.size();
for (int i = 0; i < num_channels; ++i) {
ch_buffers_[i]->Reset();
}
}
// Analyzes a frame of audio and stores the framewise metrics in
// `ch_buffers_`.
void Analyze(const AudioFrameView<const float>& frame) {
const int num_channels = frame.num_channels();
RTC_DCHECK_EQ(num_channels, ch_buffers_.size());
const int samples_per_channel = frame.samples_per_channel();
RTC_DCHECK_GT(samples_per_channel, 0);
for (int channel = 0; channel < num_channels; ++channel) {
float sum_squares = 0.0f;
float peak = 0.0f;
for (const auto& sample : frame.channel(channel)) {
sum_squares += sample * sample;
peak = std::max(std::fabs(sample), peak);
}
ch_buffers_[channel]->Push(
{sum_squares / static_cast<float>(samples_per_channel), peak});
}
}
// Estimates the analog gain adjustment for channel `channel` using a
// sliding window over the frame-wise metrics in `ch_buffers_`. Returns an
// estimate for the clipped level step equal to `default_clipped_level_step_`
// if at least `GetMinFramesProcessed()` frames have been processed since the
// last reset and a clipping event is predicted. `level`, `min_mic_level`, and
// `max_mic_level` are limited to [0, 255] and `default_step` to [1, 255].
std::optional<int> EstimateClippedLevelStep(int channel,
int level,
int default_step,
int min_mic_level,
int max_mic_level) const {
RTC_CHECK_GE(channel, 0);
RTC_CHECK_LT(channel, ch_buffers_.size());
RTC_DCHECK_GE(level, 0);
RTC_DCHECK_LE(level, 255);
RTC_DCHECK_GT(default_step, 0);
RTC_DCHECK_LE(default_step, 255);
RTC_DCHECK_GE(min_mic_level, 0);
RTC_DCHECK_LE(min_mic_level, 255);
RTC_DCHECK_GE(max_mic_level, 0);
RTC_DCHECK_LE(max_mic_level, 255);
if (level <= min_mic_level) {
return std::nullopt;
}
if (PredictClippingEvent(channel)) {
const int new_level =
SafeClamp(level - default_step, min_mic_level, max_mic_level);
const int step = level - new_level;
if (step > 0) {
return step;
}
}
return std::nullopt;
}
private:
int GetMinFramesProcessed() const {
return reference_window_delay_ + reference_window_length_;
}
// Predicts clipping events based on the processed audio frames. Returns
// true if a clipping event is likely.
bool PredictClippingEvent(int channel) const {
const auto metrics =
ch_buffers_[channel]->ComputePartialMetrics(0, window_length_);
if (!metrics.has_value() ||
!(FloatS16ToDbfs(metrics.value().max) > clipping_threshold_)) {
return false;
}
const auto reference_metrics = ch_buffers_[channel]->ComputePartialMetrics(
reference_window_delay_, reference_window_length_);
if (!reference_metrics.has_value()) {
return false;
}
const float crest_factor = ComputeCrestFactor(metrics.value());
const float reference_crest_factor =
ComputeCrestFactor(reference_metrics.value());
if (crest_factor < reference_crest_factor - crest_factor_margin_) {
return true;
}
return false;
}
std::vector<std::unique_ptr<ClippingPredictorLevelBuffer>> ch_buffers_;
const int window_length_;
const int reference_window_length_;
const int reference_window_delay_;
const float clipping_threshold_;
const float crest_factor_margin_;
};
// Performs crest factor-based clipping peak prediction.
class ClippingPeakPredictor : public ClippingPredictor {
public:
// Ctor. ClippingPeakPredictor with `num_channels` channels (limited to values
// higher than zero); window size `window_length` and reference window size
// `reference_window_length` (both referring to the number of frames in the
// respective sliding windows and limited to values higher than zero);
// reference window delay `reference_window_delay` (delay in frames, limited
// to values zero and higher with an additional requirement of
// `window_length` < `reference_window_length` + reference_window_delay`);
// and a clipping prediction threshold `clipping_threshold` (in dB). Adaptive
// clipped level step estimation is used if `adaptive_step_estimation` is
// true.
explicit ClippingPeakPredictor(int num_channels,
int window_length,
int reference_window_length,
int reference_window_delay,
int clipping_threshold,
bool adaptive_step_estimation)
: window_length_(window_length),
reference_window_length_(reference_window_length),
reference_window_delay_(reference_window_delay),
clipping_threshold_(clipping_threshold),
adaptive_step_estimation_(adaptive_step_estimation) {
RTC_DCHECK_GT(num_channels, 0);
RTC_DCHECK_GT(window_length, 0);
RTC_DCHECK_GT(reference_window_length, 0);
RTC_DCHECK_GE(reference_window_delay, 0);
RTC_DCHECK_GT(reference_window_length + reference_window_delay,
window_length);
const int buffer_length = GetMinFramesProcessed();
RTC_DCHECK_GT(buffer_length, 0);
for (int i = 0; i < num_channels; ++i) {
ch_buffers_.push_back(
std::make_unique<ClippingPredictorLevelBuffer>(buffer_length));
}
}
ClippingPeakPredictor(const ClippingPeakPredictor&) = delete;
ClippingPeakPredictor& operator=(const ClippingPeakPredictor&) = delete;
~ClippingPeakPredictor() {}
void Reset() {
const int num_channels = ch_buffers_.size();
for (int i = 0; i < num_channels; ++i) {
ch_buffers_[i]->Reset();
}
}
// Analyzes a frame of audio and stores the framewise metrics in
// `ch_buffers_`.
void Analyze(const AudioFrameView<const float>& frame) {
const int num_channels = frame.num_channels();
RTC_DCHECK_EQ(num_channels, ch_buffers_.size());
const int samples_per_channel = frame.samples_per_channel();
RTC_DCHECK_GT(samples_per_channel, 0);
for (int channel = 0; channel < num_channels; ++channel) {
float sum_squares = 0.0f;
float peak = 0.0f;
for (const auto& sample : frame.channel(channel)) {
sum_squares += sample * sample;
peak = std::max(std::fabs(sample), peak);
}
ch_buffers_[channel]->Push(
{sum_squares / static_cast<float>(samples_per_channel), peak});
}
}
// Estimates the analog gain adjustment for channel `channel` using a
// sliding window over the frame-wise metrics in `ch_buffers_`. Returns an
// estimate for the clipped level step (equal to
// `default_clipped_level_step_` if `adaptive_estimation_` is false) if at
// least `GetMinFramesProcessed()` frames have been processed since the last
// reset and a clipping event is predicted. `level`, `min_mic_level`, and
// `max_mic_level` are limited to [0, 255] and `default_step` to [1, 255].
std::optional<int> EstimateClippedLevelStep(int channel,
int level,
int default_step,
int min_mic_level,
int max_mic_level) const {
RTC_DCHECK_GE(channel, 0);
RTC_DCHECK_LT(channel, ch_buffers_.size());
RTC_DCHECK_GE(level, 0);
RTC_DCHECK_LE(level, 255);
RTC_DCHECK_GT(default_step, 0);
RTC_DCHECK_LE(default_step, 255);
RTC_DCHECK_GE(min_mic_level, 0);
RTC_DCHECK_LE(min_mic_level, 255);
RTC_DCHECK_GE(max_mic_level, 0);
RTC_DCHECK_LE(max_mic_level, 255);
if (level <= min_mic_level) {
return std::nullopt;
}
std::optional<float> estimate_db = EstimatePeakValue(channel);
if (estimate_db.has_value() && estimate_db.value() > clipping_threshold_) {
int step = 0;
if (!adaptive_step_estimation_) {
step = default_step;
} else {
const int estimated_gain_change =
SafeClamp(-static_cast<int>(std::ceil(estimate_db.value())),
-kClippingPredictorMaxGainChange, 0);
step =
std::max(level - ComputeVolumeUpdate(estimated_gain_change, level,
min_mic_level, max_mic_level),
default_step);
}
const int new_level =
SafeClamp(level - step, min_mic_level, max_mic_level);
if (level > new_level) {
return level - new_level;
}
}
return std::nullopt;
}
private:
int GetMinFramesProcessed() {
return reference_window_delay_ + reference_window_length_;
}
// Predicts clipping sample peaks based on the processed audio frames.
// Returns the estimated peak value if clipping is predicted. Otherwise
// returns std::nullopt.
std::optional<float> EstimatePeakValue(int channel) const {
const auto reference_metrics = ch_buffers_[channel]->ComputePartialMetrics(
reference_window_delay_, reference_window_length_);
if (!reference_metrics.has_value()) {
return std::nullopt;
}
const auto metrics =
ch_buffers_[channel]->ComputePartialMetrics(0, window_length_);
if (!metrics.has_value() ||
!(FloatS16ToDbfs(metrics.value().max) > clipping_threshold_)) {
return std::nullopt;
}
const float reference_crest_factor =
ComputeCrestFactor(reference_metrics.value());
const float& mean_squares = metrics.value().average;
const float projected_peak =
reference_crest_factor + FloatS16ToDbfs(std::sqrt(mean_squares));
return projected_peak;
}
std::vector<std::unique_ptr<ClippingPredictorLevelBuffer>> ch_buffers_;
const int window_length_;
const int reference_window_length_;
const int reference_window_delay_;
const int clipping_threshold_;
const bool adaptive_step_estimation_;
};
} // namespace
std::unique_ptr<ClippingPredictor> CreateClippingPredictor(
int num_channels,
const AudioProcessing::Config::GainController1::AnalogGainController::
ClippingPredictor& config) {
if (!config.enabled) {
RTC_LOG(LS_INFO) << "[AGC2] Clipping prediction disabled.";
return nullptr;
}
RTC_LOG(LS_INFO) << "[AGC2] Clipping prediction enabled.";
using ClippingPredictorMode = AudioProcessing::Config::GainController1::
AnalogGainController::ClippingPredictor::Mode;
switch (config.mode) {
case ClippingPredictorMode::kClippingEventPrediction:
return std::make_unique<ClippingEventPredictor>(
num_channels, config.window_length, config.reference_window_length,
config.reference_window_delay, config.clipping_threshold,
config.crest_factor_margin);
case ClippingPredictorMode::kAdaptiveStepClippingPeakPrediction:
return std::make_unique<ClippingPeakPredictor>(
num_channels, config.window_length, config.reference_window_length,
config.reference_window_delay, config.clipping_threshold,
/*adaptive_step_estimation=*/true);
case ClippingPredictorMode::kFixedStepClippingPeakPrediction:
return std::make_unique<ClippingPeakPredictor>(
num_channels, config.window_length, config.reference_window_length,
config.reference_window_delay, config.clipping_threshold,
/*adaptive_step_estimation=*/false);
}
RTC_DCHECK_NOTREACHED();
}
} // namespace webrtc
|