1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/interpolated_gain_curve.h"
#include <array>
#include <type_traits>
#include <vector>
#include "api/array_view.h"
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc2/agc2_common.h"
#include "modules/audio_processing/agc2/compute_interpolated_gain_curve.h"
#include "modules/audio_processing/agc2/limiter_db_gain_curve.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/gunit.h"
namespace webrtc {
namespace {
constexpr double kLevelEpsilon = 1e-2 * kMaxAbsFloatS16Value;
constexpr float kInterpolatedGainCurveTolerance = 1.f / 32768.f;
ApmDataDumper apm_data_dumper(0);
static_assert(std::is_trivially_destructible<LimiterDbGainCurve>::value, "");
const LimiterDbGainCurve limiter;
} // namespace
TEST(GainController2InterpolatedGainCurve, CreateUse) {
InterpolatedGainCurve igc(&apm_data_dumper, "");
const auto levels = test::LinSpace(
kLevelEpsilon, DbfsToFloatS16(limiter.max_input_level_db() + 1), 500);
for (const auto level : levels) {
EXPECT_GE(igc.LookUpGainToApply(level), 0.0f);
}
}
TEST(GainController2InterpolatedGainCurve, CheckValidOutput) {
InterpolatedGainCurve igc(&apm_data_dumper, "");
const auto levels = test::LinSpace(
kLevelEpsilon, limiter.max_input_level_linear() * 2.0, 500);
for (const auto level : levels) {
SCOPED_TRACE(std::to_string(level));
const float gain = igc.LookUpGainToApply(level);
EXPECT_LE(0.0f, gain);
EXPECT_LE(gain, 1.0f);
}
}
TEST(GainController2InterpolatedGainCurve, CheckMonotonicity) {
InterpolatedGainCurve igc(&apm_data_dumper, "");
const auto levels = test::LinSpace(
kLevelEpsilon, limiter.max_input_level_linear() + kLevelEpsilon + 0.5,
500);
float prev_gain = igc.LookUpGainToApply(0.0f);
for (const auto level : levels) {
const float gain = igc.LookUpGainToApply(level);
EXPECT_GE(prev_gain, gain);
prev_gain = gain;
}
}
TEST(GainController2InterpolatedGainCurve, CheckApproximation) {
InterpolatedGainCurve igc(&apm_data_dumper, "");
const auto levels = test::LinSpace(
kLevelEpsilon, limiter.max_input_level_linear() - kLevelEpsilon, 500);
for (const auto level : levels) {
SCOPED_TRACE(std::to_string(level));
EXPECT_LT(
std::fabs(limiter.GetGainLinear(level) - igc.LookUpGainToApply(level)),
kInterpolatedGainCurveTolerance);
}
}
TEST(GainController2InterpolatedGainCurve, CheckRegionBoundaries) {
InterpolatedGainCurve igc(&apm_data_dumper, "");
const std::vector<double> levels{
{kLevelEpsilon, limiter.knee_start_linear() + kLevelEpsilon,
limiter.limiter_start_linear() + kLevelEpsilon,
limiter.max_input_level_linear() + kLevelEpsilon}};
for (const auto level : levels) {
igc.LookUpGainToApply(level);
}
const auto stats = igc.get_stats();
EXPECT_EQ(1ul, stats.look_ups_identity_region);
EXPECT_EQ(1ul, stats.look_ups_knee_region);
EXPECT_EQ(1ul, stats.look_ups_limiter_region);
EXPECT_EQ(1ul, stats.look_ups_saturation_region);
}
TEST(GainController2InterpolatedGainCurve, CheckIdentityRegion) {
constexpr size_t kNumSteps = 10;
InterpolatedGainCurve igc(&apm_data_dumper, "");
const auto levels =
test::LinSpace(kLevelEpsilon, limiter.knee_start_linear(), kNumSteps);
for (const auto level : levels) {
SCOPED_TRACE(std::to_string(level));
EXPECT_EQ(1.0f, igc.LookUpGainToApply(level));
}
const auto stats = igc.get_stats();
EXPECT_EQ(kNumSteps - 1, stats.look_ups_identity_region);
EXPECT_EQ(1ul, stats.look_ups_knee_region);
EXPECT_EQ(0ul, stats.look_ups_limiter_region);
EXPECT_EQ(0ul, stats.look_ups_saturation_region);
}
TEST(GainController2InterpolatedGainCurve, CheckNoOverApproximationKnee) {
constexpr size_t kNumSteps = 10;
InterpolatedGainCurve igc(&apm_data_dumper, "");
const auto levels =
test::LinSpace(limiter.knee_start_linear() + kLevelEpsilon,
limiter.limiter_start_linear(), kNumSteps);
for (const auto level : levels) {
SCOPED_TRACE(std::to_string(level));
// Small tolerance added (needed because comparing a float with a double).
EXPECT_LE(igc.LookUpGainToApply(level),
limiter.GetGainLinear(level) + 1e-7);
}
const auto stats = igc.get_stats();
EXPECT_EQ(0ul, stats.look_ups_identity_region);
EXPECT_EQ(kNumSteps - 1, stats.look_ups_knee_region);
EXPECT_EQ(1ul, stats.look_ups_limiter_region);
EXPECT_EQ(0ul, stats.look_ups_saturation_region);
}
TEST(GainController2InterpolatedGainCurve, CheckNoOverApproximationBeyondKnee) {
constexpr size_t kNumSteps = 10;
InterpolatedGainCurve igc(&apm_data_dumper, "");
const auto levels = test::LinSpace(
limiter.limiter_start_linear() + kLevelEpsilon,
limiter.max_input_level_linear() - kLevelEpsilon, kNumSteps);
for (const auto level : levels) {
SCOPED_TRACE(std::to_string(level));
// Small tolerance added (needed because comparing a float with a double).
EXPECT_LE(igc.LookUpGainToApply(level),
limiter.GetGainLinear(level) + 1e-7);
}
const auto stats = igc.get_stats();
EXPECT_EQ(0ul, stats.look_ups_identity_region);
EXPECT_EQ(0ul, stats.look_ups_knee_region);
EXPECT_EQ(kNumSteps, stats.look_ups_limiter_region);
EXPECT_EQ(0ul, stats.look_ups_saturation_region);
}
TEST(GainController2InterpolatedGainCurve,
CheckNoOverApproximationWithSaturation) {
constexpr size_t kNumSteps = 3;
InterpolatedGainCurve igc(&apm_data_dumper, "");
const auto levels = test::LinSpace(
limiter.max_input_level_linear() + kLevelEpsilon,
limiter.max_input_level_linear() + kLevelEpsilon + 0.5, kNumSteps);
for (const auto level : levels) {
SCOPED_TRACE(std::to_string(level));
EXPECT_LE(igc.LookUpGainToApply(level), limiter.GetGainLinear(level));
}
const auto stats = igc.get_stats();
EXPECT_EQ(0ul, stats.look_ups_identity_region);
EXPECT_EQ(0ul, stats.look_ups_knee_region);
EXPECT_EQ(0ul, stats.look_ups_limiter_region);
EXPECT_EQ(kNumSteps, stats.look_ups_saturation_region);
}
TEST(GainController2InterpolatedGainCurve, CheckApproximationParams) {
test::InterpolatedParameters parameters =
test::ComputeInterpolatedGainCurveApproximationParams();
InterpolatedGainCurve igc(&apm_data_dumper, "");
for (size_t i = 0; i < kInterpolatedGainCurveTotalPoints; ++i) {
// The tolerance levels are chosen to account for deviations due
// to computing with single precision floating point numbers.
EXPECT_NEAR(igc.approximation_params_x_[i],
parameters.computed_approximation_params_x[i], 0.9f);
EXPECT_NEAR(igc.approximation_params_m_[i],
parameters.computed_approximation_params_m[i], 0.00001f);
EXPECT_NEAR(igc.approximation_params_q_[i],
parameters.computed_approximation_params_q[i], 0.001f);
}
}
} // namespace webrtc
|