1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/limiter.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstddef>
#include "absl/strings/string_view.h"
#include "api/array_view.h"
#include "api/audio/audio_view.h"
#include "modules/audio_processing/agc2/agc2_common.h"
#include "modules/audio_processing/agc2/interpolated_gain_curve.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
// This constant affects the way scaling factors are interpolated for the first
// sub-frame of a frame. Only in the case in which the first sub-frame has an
// estimated level which is greater than the that of the previous analyzed
// sub-frame, linear interpolation is replaced with a power function which
// reduces the chances of over-shooting (and hence saturation), however reducing
// the fixed gain effectiveness.
constexpr float kAttackFirstSubframeInterpolationPower = 8.0f;
void InterpolateFirstSubframe(float last_factor,
float current_factor,
ArrayView<float> subframe) {
const int n = dchecked_cast<int>(subframe.size());
constexpr float p = kAttackFirstSubframeInterpolationPower;
for (int i = 0; i < n; ++i) {
subframe[i] = std::pow(1.f - i / n, p) * (last_factor - current_factor) +
current_factor;
}
}
void ComputePerSampleSubframeFactors(
const std::array<float, kSubFramesInFrame + 1>& scaling_factors,
MonoView<float> per_sample_scaling_factors) {
const size_t num_subframes = scaling_factors.size() - 1;
const int subframe_size = CheckedDivExact(
SamplesPerChannel(per_sample_scaling_factors), num_subframes);
// Handle first sub-frame differently in case of attack.
const bool is_attack = scaling_factors[0] > scaling_factors[1];
if (is_attack) {
InterpolateFirstSubframe(
scaling_factors[0], scaling_factors[1],
per_sample_scaling_factors.subview(0, subframe_size));
}
for (size_t i = is_attack ? 1 : 0; i < num_subframes; ++i) {
const int subframe_start = i * subframe_size;
const float scaling_start = scaling_factors[i];
const float scaling_end = scaling_factors[i + 1];
const float scaling_diff = (scaling_end - scaling_start) / subframe_size;
for (int j = 0; j < subframe_size; ++j) {
per_sample_scaling_factors[subframe_start + j] =
scaling_start + scaling_diff * j;
}
}
}
void ScaleSamples(MonoView<const float> per_sample_scaling_factors,
DeinterleavedView<float> signal) {
const int samples_per_channel = signal.samples_per_channel();
RTC_DCHECK_EQ(samples_per_channel,
SamplesPerChannel(per_sample_scaling_factors));
for (size_t i = 0; i < signal.num_channels(); ++i) {
MonoView<float> channel = signal[i];
for (int j = 0; j < samples_per_channel; ++j) {
channel[j] = SafeClamp(channel[j] * per_sample_scaling_factors[j],
kMinFloatS16Value, kMaxFloatS16Value);
}
}
}
} // namespace
Limiter::Limiter(ApmDataDumper* apm_data_dumper,
size_t samples_per_channel,
absl::string_view histogram_name)
: interp_gain_curve_(apm_data_dumper, histogram_name),
level_estimator_(samples_per_channel, apm_data_dumper),
apm_data_dumper_(apm_data_dumper) {
RTC_DCHECK_LE(samples_per_channel, kMaximalNumberOfSamplesPerChannel);
}
Limiter::~Limiter() = default;
void Limiter::Process(DeinterleavedView<float> signal) {
RTC_DCHECK_LE(signal.samples_per_channel(),
kMaximalNumberOfSamplesPerChannel);
const std::array<float, kSubFramesInFrame> level_estimate =
level_estimator_.ComputeLevel(signal);
RTC_DCHECK_EQ(level_estimate.size() + 1, scaling_factors_.size());
scaling_factors_[0] = last_scaling_factor_;
std::transform(level_estimate.begin(), level_estimate.end(),
scaling_factors_.begin() + 1, [this](float x) {
return interp_gain_curve_.LookUpGainToApply(x);
});
MonoView<float> per_sample_scaling_factors(&per_sample_scaling_factors_[0],
signal.samples_per_channel());
ComputePerSampleSubframeFactors(scaling_factors_, per_sample_scaling_factors);
ScaleSamples(per_sample_scaling_factors, signal);
last_scaling_factor_ = scaling_factors_.back();
// Dump data for debug.
apm_data_dumper_->DumpRaw("agc2_limiter_last_scaling_factor",
last_scaling_factor_);
apm_data_dumper_->DumpRaw(
"agc2_limiter_region",
static_cast<int>(interp_gain_curve_.get_stats().region));
}
InterpolatedGainCurve::Stats Limiter::GetGainCurveStats() const {
return interp_gain_curve_.get_stats();
}
void Limiter::SetSamplesPerChannel(size_t samples_per_channel) {
RTC_DCHECK_LE(samples_per_channel, kMaximalNumberOfSamplesPerChannel);
level_estimator_.SetSamplesPerChannel(samples_per_channel);
}
void Limiter::Reset() {
level_estimator_.Reset();
}
float Limiter::LastAudioLevel() const {
return level_estimator_.LastAudioLevel();
}
} // namespace webrtc
|