1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/noise_level_estimator.h"
#include <stddef.h>
#include <algorithm>
#include <cmath>
#include <numeric>
#include "api/audio/audio_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr int kFramesPerSecond = 100;
float FrameEnergy(DeinterleavedView<const float> audio) {
float energy = 0.0f;
for (size_t k = 0; k < audio.num_channels(); ++k) {
MonoView<const float> ch = audio[k];
float channel_energy =
std::accumulate(ch.begin(), ch.end(), 0.0f,
[](float a, float b) -> float { return a + b * b; });
energy = std::max(channel_energy, energy);
}
return energy;
}
float EnergyToDbfs(float signal_energy, int num_samples) {
RTC_DCHECK_GE(signal_energy, 0.0f);
const float rms_square = signal_energy / num_samples;
constexpr float kMinDbfs = -90.30899869919436f;
if (rms_square <= 1.0f) {
return kMinDbfs;
}
return 10.0f * std::log10(rms_square) + kMinDbfs;
}
// Updates the noise floor with instant decay and slow attack. This tuning is
// specific for AGC2, so that (i) it can promptly increase the gain if the noise
// floor drops (instant decay) and (ii) in case of music or fast speech, due to
// which the noise floor can be overestimated, the gain reduction is slowed
// down.
float SmoothNoiseFloorEstimate(float current_estimate, float new_estimate) {
constexpr float kAttack = 0.5f;
if (current_estimate < new_estimate) {
// Attack phase.
return kAttack * new_estimate + (1.0f - kAttack) * current_estimate;
}
// Instant attack.
return new_estimate;
}
class NoiseFloorEstimator : public NoiseLevelEstimator {
public:
// Update the noise floor every 5 seconds.
static constexpr int kUpdatePeriodNumFrames = 500;
static_assert(kUpdatePeriodNumFrames >= 200,
"A too small value may cause noise level overestimation.");
static_assert(kUpdatePeriodNumFrames <= 1500,
"A too large value may make AGC2 slow at reacting to increased "
"noise levels.");
NoiseFloorEstimator(ApmDataDumper* data_dumper) : data_dumper_(data_dumper) {
RTC_DCHECK(data_dumper_);
// Initially assume that 48 kHz will be used. `Analyze()` will detect the
// used sample rate and call `Initialize()` again if needed.
Initialize(/*sample_rate_hz=*/48000);
}
NoiseFloorEstimator(const NoiseFloorEstimator&) = delete;
NoiseFloorEstimator& operator=(const NoiseFloorEstimator&) = delete;
~NoiseFloorEstimator() = default;
float Analyze(DeinterleavedView<const float> frame) override {
// Detect sample rate changes.
const int sample_rate_hz =
static_cast<int>(frame.samples_per_channel() * kFramesPerSecond);
if (sample_rate_hz != sample_rate_hz_) {
Initialize(sample_rate_hz);
}
const float frame_energy = FrameEnergy(frame);
if (frame_energy <= min_noise_energy_) {
// Ignore frames when muted or below the minimum measurable energy.
if (data_dumper_)
data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level",
noise_energy_);
return EnergyToDbfs(noise_energy_,
static_cast<int>(frame.samples_per_channel()));
}
if (preliminary_noise_energy_set_) {
preliminary_noise_energy_ =
std::min(preliminary_noise_energy_, frame_energy);
} else {
preliminary_noise_energy_ = frame_energy;
preliminary_noise_energy_set_ = true;
}
if (data_dumper_)
data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level",
preliminary_noise_energy_);
if (counter_ == 0) {
// Full period observed.
first_period_ = false;
// Update the estimated noise floor energy with the preliminary
// estimation.
noise_energy_ = SmoothNoiseFloorEstimate(
/*current_estimate=*/noise_energy_,
/*new_estimate=*/preliminary_noise_energy_);
// Reset for a new observation period.
counter_ = kUpdatePeriodNumFrames;
preliminary_noise_energy_set_ = false;
} else if (first_period_) {
// While analyzing the signal during the initial period, continuously
// update the estimated noise energy, which is monotonic.
noise_energy_ = preliminary_noise_energy_;
counter_--;
} else {
// During the observation period it's only allowed to lower the energy.
noise_energy_ = std::min(noise_energy_, preliminary_noise_energy_);
counter_--;
}
float noise_rms_dbfs = EnergyToDbfs(
noise_energy_, static_cast<int>(frame.samples_per_channel()));
if (data_dumper_)
data_dumper_->DumpRaw("agc2_noise_rms_dbfs", noise_rms_dbfs);
return noise_rms_dbfs;
}
private:
void Initialize(int sample_rate_hz) {
sample_rate_hz_ = sample_rate_hz;
first_period_ = true;
preliminary_noise_energy_set_ = false;
// Initialize the minimum noise energy to -84 dBFS.
min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond;
preliminary_noise_energy_ = min_noise_energy_;
noise_energy_ = min_noise_energy_;
counter_ = kUpdatePeriodNumFrames;
}
ApmDataDumper* const data_dumper_;
int sample_rate_hz_;
float min_noise_energy_;
bool first_period_;
bool preliminary_noise_energy_set_;
float preliminary_noise_energy_;
float noise_energy_;
int counter_;
};
} // namespace
std::unique_ptr<NoiseLevelEstimator> CreateNoiseFloorEstimator(
ApmDataDumper* data_dumper) {
return std::make_unique<NoiseFloorEstimator>(data_dumper);
}
} // namespace webrtc
|