File: rnn.h

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (53 lines) | stat: -rw-r--r-- 1,633 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/*
 *  Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_
#define MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_

#include <stddef.h>
#include <sys/types.h>

#include <array>
#include <vector>

#include "api/array_view.h"
#include "modules/audio_processing/agc2/cpu_features.h"
#include "modules/audio_processing/agc2/rnn_vad/common.h"
#include "modules/audio_processing/agc2/rnn_vad/rnn_fc.h"
#include "modules/audio_processing/agc2/rnn_vad/rnn_gru.h"

namespace webrtc {
namespace rnn_vad {

// Recurrent network with hard-coded architecture and weights for voice activity
// detection.
class RnnVad {
 public:
  explicit RnnVad(const AvailableCpuFeatures& cpu_features);
  RnnVad(const RnnVad&) = delete;
  RnnVad& operator=(const RnnVad&) = delete;
  ~RnnVad();
  void Reset();
  // Observes `feature_vector` and `is_silence`, updates the RNN and returns the
  // current voice probability.
  float ComputeVadProbability(
      ArrayView<const float, kFeatureVectorSize> feature_vector,
      bool is_silence);

 private:
  FullyConnectedLayer input_;
  GatedRecurrentLayer hidden_;
  FullyConnectedLayer output_;
};

}  // namespace rnn_vad
}  // namespace webrtc

#endif  // MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_H_