1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/rnn_vad/rnn_gru.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "third_party/rnnoise/src/rnn_activations.h"
#include "third_party/rnnoise/src/rnn_vad_weights.h"
namespace webrtc {
namespace rnn_vad {
namespace {
constexpr int kNumGruGates = 3; // Update, reset, output.
std::vector<float> PreprocessGruTensor(ArrayView<const int8_t> tensor_src,
int output_size) {
// Transpose, cast and scale.
// `n` is the size of the first dimension of the 3-dim tensor `weights`.
const int n = CheckedDivExact(dchecked_cast<int>(tensor_src.size()),
output_size * kNumGruGates);
const int stride_src = kNumGruGates * output_size;
const int stride_dst = n * output_size;
std::vector<float> tensor_dst(tensor_src.size());
for (int g = 0; g < kNumGruGates; ++g) {
for (int o = 0; o < output_size; ++o) {
for (int i = 0; i < n; ++i) {
tensor_dst[g * stride_dst + o * n + i] =
::rnnoise::kWeightsScale *
static_cast<float>(
tensor_src[i * stride_src + g * output_size + o]);
}
}
}
return tensor_dst;
}
// Computes the output for the update or the reset gate.
// Operation: `g = sigmoid(W^T∙i + R^T∙s + b)` where
// - `g`: output gate vector
// - `W`: weights matrix
// - `i`: input vector
// - `R`: recurrent weights matrix
// - `s`: state gate vector
// - `b`: bias vector
void ComputeUpdateResetGate(int input_size,
int output_size,
const VectorMath& vector_math,
ArrayView<const float> input,
ArrayView<const float> state,
ArrayView<const float> bias,
ArrayView<const float> weights,
ArrayView<const float> recurrent_weights,
ArrayView<float> gate) {
RTC_DCHECK_EQ(input.size(), input_size);
RTC_DCHECK_EQ(state.size(), output_size);
RTC_DCHECK_EQ(bias.size(), output_size);
RTC_DCHECK_EQ(weights.size(), input_size * output_size);
RTC_DCHECK_EQ(recurrent_weights.size(), output_size * output_size);
RTC_DCHECK_GE(gate.size(), output_size); // `gate` is over-allocated.
for (int o = 0; o < output_size; ++o) {
float x = bias[o];
x += vector_math.DotProduct(input,
weights.subview(o * input_size, input_size));
x += vector_math.DotProduct(
state, recurrent_weights.subview(o * output_size, output_size));
gate[o] = ::rnnoise::SigmoidApproximated(x);
}
}
// Computes the output for the state gate.
// Operation: `s' = u .* s + (1 - u) .* ReLU(W^T∙i + R^T∙(s .* r) + b)` where
// - `s'`: output state gate vector
// - `s`: previous state gate vector
// - `u`: update gate vector
// - `W`: weights matrix
// - `i`: input vector
// - `R`: recurrent weights matrix
// - `r`: reset gate vector
// - `b`: bias vector
// - `.*` element-wise product
void ComputeStateGate(int input_size,
int output_size,
const VectorMath& vector_math,
ArrayView<const float> input,
ArrayView<const float> update,
ArrayView<const float> reset,
ArrayView<const float> bias,
ArrayView<const float> weights,
ArrayView<const float> recurrent_weights,
ArrayView<float> state) {
RTC_DCHECK_EQ(input.size(), input_size);
RTC_DCHECK_GE(update.size(), output_size); // `update` is over-allocated.
RTC_DCHECK_GE(reset.size(), output_size); // `reset` is over-allocated.
RTC_DCHECK_EQ(bias.size(), output_size);
RTC_DCHECK_EQ(weights.size(), input_size * output_size);
RTC_DCHECK_EQ(recurrent_weights.size(), output_size * output_size);
RTC_DCHECK_EQ(state.size(), output_size);
std::array<float, kGruLayerMaxUnits> reset_x_state;
for (int o = 0; o < output_size; ++o) {
reset_x_state[o] = state[o] * reset[o];
}
for (int o = 0; o < output_size; ++o) {
float x = bias[o];
x += vector_math.DotProduct(input,
weights.subview(o * input_size, input_size));
x += vector_math.DotProduct(
{reset_x_state.data(), static_cast<size_t>(output_size)},
recurrent_weights.subview(o * output_size, output_size));
state[o] = update[o] * state[o] + (1.f - update[o]) * std::max(0.f, x);
}
}
} // namespace
GatedRecurrentLayer::GatedRecurrentLayer(
const int input_size,
const int output_size,
const ArrayView<const int8_t> bias,
const ArrayView<const int8_t> weights,
const ArrayView<const int8_t> recurrent_weights,
const AvailableCpuFeatures& cpu_features,
absl::string_view layer_name)
: input_size_(input_size),
output_size_(output_size),
bias_(PreprocessGruTensor(bias, output_size)),
weights_(PreprocessGruTensor(weights, output_size)),
recurrent_weights_(PreprocessGruTensor(recurrent_weights, output_size)),
vector_math_(cpu_features) {
RTC_DCHECK_LE(output_size_, kGruLayerMaxUnits)
<< "Insufficient GRU layer over-allocation (" << layer_name << ").";
RTC_DCHECK_EQ(kNumGruGates * output_size_, bias_.size())
<< "Mismatching output size and bias terms array size (" << layer_name
<< ").";
RTC_DCHECK_EQ(kNumGruGates * input_size_ * output_size_, weights_.size())
<< "Mismatching input-output size and weight coefficients array size ("
<< layer_name << ").";
RTC_DCHECK_EQ(kNumGruGates * output_size_ * output_size_,
recurrent_weights_.size())
<< "Mismatching input-output size and recurrent weight coefficients array"
" size ("
<< layer_name << ").";
Reset();
}
GatedRecurrentLayer::~GatedRecurrentLayer() = default;
void GatedRecurrentLayer::Reset() {
state_.fill(0.f);
}
void GatedRecurrentLayer::ComputeOutput(ArrayView<const float> input) {
RTC_DCHECK_EQ(input.size(), input_size_);
// The tensors below are organized as a sequence of flattened tensors for the
// `update`, `reset` and `state` gates.
ArrayView<const float> bias(bias_);
ArrayView<const float> weights(weights_);
ArrayView<const float> recurrent_weights(recurrent_weights_);
// Strides to access to the flattened tensors for a specific gate.
const int stride_weights = input_size_ * output_size_;
const int stride_recurrent_weights = output_size_ * output_size_;
ArrayView<float> state(state_.data(), output_size_);
// Update gate.
std::array<float, kGruLayerMaxUnits> update;
ComputeUpdateResetGate(
input_size_, output_size_, vector_math_, input, state,
bias.subview(0, output_size_), weights.subview(0, stride_weights),
recurrent_weights.subview(0, stride_recurrent_weights), update);
// Reset gate.
std::array<float, kGruLayerMaxUnits> reset;
ComputeUpdateResetGate(input_size_, output_size_, vector_math_, input, state,
bias.subview(output_size_, output_size_),
weights.subview(stride_weights, stride_weights),
recurrent_weights.subview(stride_recurrent_weights,
stride_recurrent_weights),
reset);
// State gate.
ComputeStateGate(input_size_, output_size_, vector_math_, input, update,
reset, bias.subview(2 * output_size_, output_size_),
weights.subview(2 * stride_weights, stride_weights),
recurrent_weights.subview(2 * stride_recurrent_weights,
stride_recurrent_weights),
state);
}
} // namespace rnn_vad
} // namespace webrtc
|