1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/rnn_vad/spectral_features.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <numeric>
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_compare.h"
namespace webrtc {
namespace rnn_vad {
namespace {
constexpr float kSilenceThreshold = 0.04f;
// Computes the new cepstral difference stats and pushes them into the passed
// symmetric matrix buffer.
void UpdateCepstralDifferenceStats(
ArrayView<const float, kNumBands> new_cepstral_coeffs,
const RingBuffer<float, kNumBands, kCepstralCoeffsHistorySize>& ring_buf,
SymmetricMatrixBuffer<float, kCepstralCoeffsHistorySize>* sym_matrix_buf) {
RTC_DCHECK(sym_matrix_buf);
// Compute the new cepstral distance stats.
std::array<float, kCepstralCoeffsHistorySize - 1> distances;
for (int i = 0; i < kCepstralCoeffsHistorySize - 1; ++i) {
const int delay = i + 1;
auto old_cepstral_coeffs = ring_buf.GetArrayView(delay);
distances[i] = 0.f;
for (int k = 0; k < kNumBands; ++k) {
const float c = new_cepstral_coeffs[k] - old_cepstral_coeffs[k];
distances[i] += c * c;
}
}
// Push the new spectral distance stats into the symmetric matrix buffer.
sym_matrix_buf->Push(distances);
}
// Computes the first half of the Vorbis window.
std::array<float, kFrameSize20ms24kHz / 2> ComputeScaledHalfVorbisWindow(
float scaling = 1.f) {
constexpr int kHalfSize = kFrameSize20ms24kHz / 2;
std::array<float, kHalfSize> half_window{};
for (int i = 0; i < kHalfSize; ++i) {
half_window[i] =
scaling *
std::sin(0.5 * kPi * std::sin(0.5 * kPi * (i + 0.5) / kHalfSize) *
std::sin(0.5 * kPi * (i + 0.5) / kHalfSize));
}
return half_window;
}
// Computes the forward FFT on a 20 ms frame to which a given window function is
// applied. The Fourier coefficient corresponding to the Nyquist frequency is
// set to zero (it is never used and this allows to simplify the code).
void ComputeWindowedForwardFft(
ArrayView<const float, kFrameSize20ms24kHz> frame,
const std::array<float, kFrameSize20ms24kHz / 2>& half_window,
Pffft::FloatBuffer* fft_input_buffer,
Pffft::FloatBuffer* fft_output_buffer,
Pffft* fft) {
RTC_DCHECK_EQ(frame.size(), 2 * half_window.size());
// Apply windowing.
auto in = fft_input_buffer->GetView();
for (int i = 0, j = kFrameSize20ms24kHz - 1; SafeLt(i, half_window.size());
++i, --j) {
in[i] = frame[i] * half_window[i];
in[j] = frame[j] * half_window[i];
}
fft->ForwardTransform(*fft_input_buffer, fft_output_buffer, /*ordered=*/true);
// Set the Nyquist frequency coefficient to zero.
auto out = fft_output_buffer->GetView();
out[1] = 0.f;
}
} // namespace
SpectralFeaturesExtractor::SpectralFeaturesExtractor()
: half_window_(ComputeScaledHalfVorbisWindow(
1.f / static_cast<float>(kFrameSize20ms24kHz))),
fft_(kFrameSize20ms24kHz, Pffft::FftType::kReal),
fft_buffer_(fft_.CreateBuffer()),
reference_frame_fft_(fft_.CreateBuffer()),
lagged_frame_fft_(fft_.CreateBuffer()),
dct_table_(ComputeDctTable()) {}
SpectralFeaturesExtractor::~SpectralFeaturesExtractor() = default;
void SpectralFeaturesExtractor::Reset() {
cepstral_coeffs_ring_buf_.Reset();
cepstral_diffs_buf_.Reset();
}
bool SpectralFeaturesExtractor::CheckSilenceComputeFeatures(
ArrayView<const float, kFrameSize20ms24kHz> reference_frame,
ArrayView<const float, kFrameSize20ms24kHz> lagged_frame,
ArrayView<float, kNumBands - kNumLowerBands> higher_bands_cepstrum,
ArrayView<float, kNumLowerBands> average,
ArrayView<float, kNumLowerBands> first_derivative,
ArrayView<float, kNumLowerBands> second_derivative,
ArrayView<float, kNumLowerBands> bands_cross_corr,
float* variability) {
// Compute the Opus band energies for the reference frame.
ComputeWindowedForwardFft(reference_frame, half_window_, fft_buffer_.get(),
reference_frame_fft_.get(), &fft_);
spectral_correlator_.ComputeAutoCorrelation(
reference_frame_fft_->GetConstView(), reference_frame_bands_energy_);
// Check if the reference frame has silence.
const float tot_energy =
std::accumulate(reference_frame_bands_energy_.begin(),
reference_frame_bands_energy_.end(), 0.f);
if (tot_energy < kSilenceThreshold) {
return true;
}
// Compute the Opus band energies for the lagged frame.
ComputeWindowedForwardFft(lagged_frame, half_window_, fft_buffer_.get(),
lagged_frame_fft_.get(), &fft_);
spectral_correlator_.ComputeAutoCorrelation(lagged_frame_fft_->GetConstView(),
lagged_frame_bands_energy_);
// Log of the band energies for the reference frame.
std::array<float, kNumBands> log_bands_energy;
ComputeSmoothedLogMagnitudeSpectrum(reference_frame_bands_energy_,
log_bands_energy);
// Reference frame cepstrum.
std::array<float, kNumBands> cepstrum;
ComputeDct(log_bands_energy, dct_table_, cepstrum);
// Ad-hoc correction terms for the first two cepstral coefficients.
cepstrum[0] -= 12.f;
cepstrum[1] -= 4.f;
// Update the ring buffer and the cepstral difference stats.
cepstral_coeffs_ring_buf_.Push(cepstrum);
UpdateCepstralDifferenceStats(cepstrum, cepstral_coeffs_ring_buf_,
&cepstral_diffs_buf_);
// Write the higher bands cepstral coefficients.
RTC_DCHECK_EQ(cepstrum.size() - kNumLowerBands, higher_bands_cepstrum.size());
std::copy(cepstrum.begin() + kNumLowerBands, cepstrum.end(),
higher_bands_cepstrum.begin());
// Compute and write remaining features.
ComputeAvgAndDerivatives(average, first_derivative, second_derivative);
ComputeNormalizedCepstralCorrelation(bands_cross_corr);
RTC_DCHECK(variability);
*variability = ComputeVariability();
return false;
}
void SpectralFeaturesExtractor::ComputeAvgAndDerivatives(
ArrayView<float, kNumLowerBands> average,
ArrayView<float, kNumLowerBands> first_derivative,
ArrayView<float, kNumLowerBands> second_derivative) const {
auto curr = cepstral_coeffs_ring_buf_.GetArrayView(0);
auto prev1 = cepstral_coeffs_ring_buf_.GetArrayView(1);
auto prev2 = cepstral_coeffs_ring_buf_.GetArrayView(2);
RTC_DCHECK_EQ(average.size(), first_derivative.size());
RTC_DCHECK_EQ(first_derivative.size(), second_derivative.size());
RTC_DCHECK_LE(average.size(), curr.size());
for (int i = 0; SafeLt(i, average.size()); ++i) {
// Average, kernel: [1, 1, 1].
average[i] = curr[i] + prev1[i] + prev2[i];
// First derivative, kernel: [1, 0, - 1].
first_derivative[i] = curr[i] - prev2[i];
// Second derivative, Laplacian kernel: [1, -2, 1].
second_derivative[i] = curr[i] - 2 * prev1[i] + prev2[i];
}
}
void SpectralFeaturesExtractor::ComputeNormalizedCepstralCorrelation(
ArrayView<float, kNumLowerBands> bands_cross_corr) {
spectral_correlator_.ComputeCrossCorrelation(
reference_frame_fft_->GetConstView(), lagged_frame_fft_->GetConstView(),
bands_cross_corr_);
// Normalize.
for (int i = 0; SafeLt(i, bands_cross_corr_.size()); ++i) {
bands_cross_corr_[i] =
bands_cross_corr_[i] /
std::sqrt(0.001f + reference_frame_bands_energy_[i] *
lagged_frame_bands_energy_[i]);
}
// Cepstrum.
ComputeDct(bands_cross_corr_, dct_table_, bands_cross_corr);
// Ad-hoc correction terms for the first two cepstral coefficients.
bands_cross_corr[0] -= 1.3f;
bands_cross_corr[1] -= 0.9f;
}
float SpectralFeaturesExtractor::ComputeVariability() const {
// Compute cepstral variability score.
float variability = 0.f;
for (int delay1 = 0; delay1 < kCepstralCoeffsHistorySize; ++delay1) {
float min_dist = std::numeric_limits<float>::max();
for (int delay2 = 0; delay2 < kCepstralCoeffsHistorySize; ++delay2) {
if (delay1 == delay2) // The distance would be 0.
continue;
min_dist =
std::min(min_dist, cepstral_diffs_buf_.GetValue(delay1, delay2));
}
variability += min_dist;
}
// Normalize (based on training set stats).
// TODO(bugs.webrtc.org/10480): Isolate normalization from feature extraction.
return variability / kCepstralCoeffsHistorySize - 2.1f;
}
} // namespace rnn_vad
} // namespace webrtc
|