1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/ns/noise_estimator.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <numbers>
#include "api/array_view.h"
#include "modules/audio_processing/ns/fast_math.h"
#include "modules/audio_processing/ns/ns_common.h"
#include "modules/audio_processing/ns/suppression_params.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
using std::numbers::ln10_v;
// Log(i).
// clang-format off
constexpr std::array<float, 129> log_table = {
0.f, 0.f, 0.f, 0.f, 0.f, 1.609438f, 1.791759f,
1.945910f, 2.079442f, 2.197225f, ln10_v<float>, 2.397895f, 2.484907f,
2.564949f,
2.639057f, 2.708050f, 2.772589f, 2.833213f, 2.890372f, 2.944439f, 2.995732f,
3.044522f, 3.091043f, 3.135494f, 3.178054f, 3.218876f, 3.258097f, 3.295837f,
3.332205f, 3.367296f, 3.401197f, 3.433987f, 3.465736f, 3.496507f, 3.526361f,
3.555348f, 3.583519f, 3.610918f, 3.637586f, 3.663562f, 3.688879f, 3.713572f,
3.737669f, 3.761200f, 3.784190f, 3.806663f, 3.828641f, 3.850147f, 3.871201f,
3.891820f, 3.912023f, 3.931826f, 3.951244f, 3.970292f, 3.988984f, 4.007333f,
4.025352f, 4.043051f, 4.060443f, 4.077538f, 4.094345f, 4.110874f, 4.127134f,
4.143135f, 4.158883f, 4.174387f, 4.189655f, 4.204693f, 4.219508f, 4.234107f,
4.248495f, 4.262680f, 4.276666f, 4.290460f, 4.304065f, 4.317488f, 4.330733f,
4.343805f, 4.356709f, 4.369448f, 4.382027f, 4.394449f, 4.406719f, 4.418841f,
4.430817f, 4.442651f, 4.454347f, 4.465908f, 4.477337f, 4.488636f, 4.499810f,
4.510859f, 4.521789f, 4.532599f, 4.543295f, 4.553877f, 4.564348f, 4.574711f,
4.584968f, 4.595119f, 4.605170f, 4.615121f, 4.624973f, 4.634729f, 4.644391f,
4.653960f, 4.663439f, 4.672829f, 4.682131f, 4.691348f, 4.700480f, 4.709530f,
4.718499f, 4.727388f, 4.736198f, 4.744932f, 4.753591f, 4.762174f, 4.770685f,
4.779124f, 4.787492f, 4.795791f, 4.804021f, 4.812184f, 4.820282f, 4.828314f,
4.836282f, 4.844187f, 4.852030f};
// clang-format on
} // namespace
NoiseEstimator::NoiseEstimator(const SuppressionParams& suppression_params)
: suppression_params_(suppression_params) {
noise_spectrum_.fill(0.f);
prev_noise_spectrum_.fill(0.f);
conservative_noise_spectrum_.fill(0.f);
parametric_noise_spectrum_.fill(0.f);
}
void NoiseEstimator::PrepareAnalysis() {
std::copy(noise_spectrum_.begin(), noise_spectrum_.end(),
prev_noise_spectrum_.begin());
}
void NoiseEstimator::PreUpdate(
int32_t num_analyzed_frames,
ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum,
float signal_spectral_sum) {
quantile_noise_estimator_.Estimate(signal_spectrum, noise_spectrum_);
if (num_analyzed_frames < kShortStartupPhaseBlocks) {
// Compute simplified noise model during startup.
const size_t kStartBand = 5;
float sum_log_i_log_magn = 0.f;
float sum_log_i = 0.f;
float sum_log_i_square = 0.f;
float sum_log_magn = 0.f;
for (size_t i = kStartBand; i < kFftSizeBy2Plus1; ++i) {
float log_i = log_table[i];
sum_log_i += log_i;
sum_log_i_square += log_i * log_i;
float log_signal = LogApproximation(signal_spectrum[i]);
sum_log_magn += log_signal;
sum_log_i_log_magn += log_i * log_signal;
}
// Estimate the parameter for the level of the white noise.
constexpr float kOneByFftSizeBy2Plus1 = 1.f / kFftSizeBy2Plus1;
white_noise_level_ += signal_spectral_sum * kOneByFftSizeBy2Plus1 *
suppression_params_.over_subtraction_factor;
// Estimate pink noise parameters.
float denom = sum_log_i_square * (kFftSizeBy2Plus1 - kStartBand) -
sum_log_i * sum_log_i;
float num =
sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn;
RTC_DCHECK_NE(denom, 0.f);
float pink_noise_adjustment = num / denom;
// Constrain the estimated spectrum to be positive.
pink_noise_adjustment = std::max(pink_noise_adjustment, 0.f);
pink_noise_numerator_ += pink_noise_adjustment;
num = sum_log_i * sum_log_magn -
(kFftSizeBy2Plus1 - kStartBand) * sum_log_i_log_magn;
RTC_DCHECK_NE(denom, 0.f);
pink_noise_adjustment = num / denom;
// Constrain the pink noise power to be in the interval [0, 1].
pink_noise_adjustment = std::max(std::min(pink_noise_adjustment, 1.f), 0.f);
pink_noise_exp_ += pink_noise_adjustment;
const float one_by_num_analyzed_frames_plus_1 =
1.f / (num_analyzed_frames + 1.f);
// Calculate the frequency-independent parts of parametric noise estimate.
float parametric_exp = 0.f;
float parametric_num = 0.f;
if (pink_noise_exp_ > 0.f) {
// Use pink noise estimate.
parametric_num = ExpApproximation(pink_noise_numerator_ *
one_by_num_analyzed_frames_plus_1);
parametric_num *= num_analyzed_frames + 1.f;
parametric_exp = pink_noise_exp_ * one_by_num_analyzed_frames_plus_1;
}
constexpr float kOneByShortStartupPhaseBlocks =
1.f / kShortStartupPhaseBlocks;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
// Estimate the background noise using the white and pink noise
// parameters.
if (pink_noise_exp_ == 0.f) {
// Use white noise estimate.
parametric_noise_spectrum_[i] = white_noise_level_;
} else {
// Use pink noise estimate.
float use_band = i < kStartBand ? kStartBand : i;
float parametric_denom = PowApproximation(use_band, parametric_exp);
RTC_DCHECK_NE(parametric_denom, 0.f);
parametric_noise_spectrum_[i] = parametric_num / parametric_denom;
}
}
// Weight quantile noise with modeled noise.
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
noise_spectrum_[i] *= num_analyzed_frames;
float tmp = parametric_noise_spectrum_[i] *
(kShortStartupPhaseBlocks - num_analyzed_frames);
noise_spectrum_[i] += tmp * one_by_num_analyzed_frames_plus_1;
noise_spectrum_[i] *= kOneByShortStartupPhaseBlocks;
}
}
}
void NoiseEstimator::PostUpdate(
ArrayView<const float> speech_probability,
ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) {
// Time-avg parameter for noise_spectrum update.
constexpr float kNoiseUpdate = 0.9f;
float gamma = kNoiseUpdate;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
const float prob_speech = speech_probability[i];
const float prob_non_speech = 1.f - prob_speech;
// Temporary noise update used for speech frames if update value is less
// than previous.
float noise_update_tmp =
gamma * prev_noise_spectrum_[i] +
(1.f - gamma) * (prob_non_speech * signal_spectrum[i] +
prob_speech * prev_noise_spectrum_[i]);
// Time-constant based on speech/noise_spectrum state.
float gamma_old = gamma;
// Increase gamma for frame likely to be seech.
constexpr float kProbRange = .2f;
gamma = prob_speech > kProbRange ? .99f : kNoiseUpdate;
// Conservative noise_spectrum update.
if (prob_speech < kProbRange) {
conservative_noise_spectrum_[i] +=
0.05f * (signal_spectrum[i] - conservative_noise_spectrum_[i]);
}
// Noise_spectrum update.
if (gamma == gamma_old) {
noise_spectrum_[i] = noise_update_tmp;
} else {
noise_spectrum_[i] =
gamma * prev_noise_spectrum_[i] +
(1.f - gamma) * (prob_non_speech * signal_spectrum[i] +
prob_speech * prev_noise_spectrum_[i]);
// Allow for noise_spectrum update downwards: If noise_spectrum update
// decreases the noise_spectrum, it is safe, so allow it to happen.
noise_spectrum_[i] = std::min(noise_spectrum_[i], noise_update_tmp);
}
}
}
} // namespace webrtc
|