1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/ns/noise_suppressor.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include "modules/audio_processing/ns/fast_math.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Maps sample rate to number of bands.
size_t NumBandsForRate(size_t sample_rate_hz) {
RTC_DCHECK(sample_rate_hz == 16000 || sample_rate_hz == 32000 ||
sample_rate_hz == 48000);
return sample_rate_hz / 16000;
}
// Maximum number of channels for which the channel data is stored on
// the stack. If the number of channels are larger than this, they are stored
// using scratch memory that is pre-allocated on the heap. The reason for this
// partitioning is not to waste heap space for handling the more common numbers
// of channels, while at the same time not limiting the support for higher
// numbers of channels by enforcing the channel data to be stored on the
// stack using a fixed maximum value.
constexpr size_t kMaxNumChannelsOnStack = 2;
// Chooses the number of channels to store on the heap when that is required due
// to the number of channels being larger than the pre-defined number
// of channels to store on the stack.
size_t NumChannelsOnHeap(size_t num_channels) {
return num_channels > kMaxNumChannelsOnStack ? num_channels : 0;
}
// Hybrib Hanning and flat window for the filterbank.
constexpr std::array<float, 96> kBlocks160w256FirstHalf = {
0.00000000f, 0.01636173f, 0.03271908f, 0.04906767f, 0.06540313f,
0.08172107f, 0.09801714f, 0.11428696f, 0.13052619f, 0.14673047f,
0.16289547f, 0.17901686f, 0.19509032f, 0.21111155f, 0.22707626f,
0.24298018f, 0.25881905f, 0.27458862f, 0.29028468f, 0.30590302f,
0.32143947f, 0.33688985f, 0.35225005f, 0.36751594f, 0.38268343f,
0.39774847f, 0.41270703f, 0.42755509f, 0.44228869f, 0.45690388f,
0.47139674f, 0.48576339f, 0.50000000f, 0.51410274f, 0.52806785f,
0.54189158f, 0.55557023f, 0.56910015f, 0.58247770f, 0.59569930f,
0.60876143f, 0.62166057f, 0.63439328f, 0.64695615f, 0.65934582f,
0.67155895f, 0.68359230f, 0.69544264f, 0.70710678f, 0.71858162f,
0.72986407f, 0.74095113f, 0.75183981f, 0.76252720f, 0.77301045f,
0.78328675f, 0.79335334f, 0.80320753f, 0.81284668f, 0.82226822f,
0.83146961f, 0.84044840f, 0.84920218f, 0.85772861f, 0.86602540f,
0.87409034f, 0.88192126f, 0.88951608f, 0.89687274f, 0.90398929f,
0.91086382f, 0.91749450f, 0.92387953f, 0.93001722f, 0.93590593f,
0.94154407f, 0.94693013f, 0.95206268f, 0.95694034f, 0.96156180f,
0.96592583f, 0.97003125f, 0.97387698f, 0.97746197f, 0.98078528f,
0.98384601f, 0.98664333f, 0.98917651f, 0.99144486f, 0.99344778f,
0.99518473f, 0.99665524f, 0.99785892f, 0.99879546f, 0.99946459f,
0.99986614f};
// Applies the filterbank window to a buffer.
void ApplyFilterBankWindow(ArrayView<float, kFftSize> x) {
for (size_t i = 0; i < 96; ++i) {
x[i] = kBlocks160w256FirstHalf[i] * x[i];
}
for (size_t i = 161, k = 95; i < kFftSize; ++i, --k) {
RTC_DCHECK_NE(0, k);
x[i] = kBlocks160w256FirstHalf[k] * x[i];
}
}
// Extends a frame with previous data.
void FormExtendedFrame(ArrayView<const float, kNsFrameSize> frame,
ArrayView<float, kFftSize - kNsFrameSize> old_data,
ArrayView<float, kFftSize> extended_frame) {
std::copy(old_data.begin(), old_data.end(), extended_frame.begin());
std::copy(frame.begin(), frame.end(),
extended_frame.begin() + old_data.size());
std::copy(extended_frame.end() - old_data.size(), extended_frame.end(),
old_data.begin());
}
// Uses overlap-and-add to produce an output frame.
void OverlapAndAdd(ArrayView<const float, kFftSize> extended_frame,
ArrayView<float, kOverlapSize> overlap_memory,
ArrayView<float, kNsFrameSize> output_frame) {
for (size_t i = 0; i < kOverlapSize; ++i) {
output_frame[i] = overlap_memory[i] + extended_frame[i];
}
std::copy(extended_frame.begin() + kOverlapSize,
extended_frame.begin() + kNsFrameSize,
output_frame.begin() + kOverlapSize);
std::copy(extended_frame.begin() + kNsFrameSize, extended_frame.end(),
overlap_memory.begin());
}
// Produces a delayed frame.
void DelaySignal(ArrayView<const float, kNsFrameSize> frame,
ArrayView<float, kFftSize - kNsFrameSize> delay_buffer,
ArrayView<float, kNsFrameSize> delayed_frame) {
constexpr size_t kSamplesFromFrame = kNsFrameSize - (kFftSize - kNsFrameSize);
std::copy(delay_buffer.begin(), delay_buffer.end(), delayed_frame.begin());
std::copy(frame.begin(), frame.begin() + kSamplesFromFrame,
delayed_frame.begin() + delay_buffer.size());
std::copy(frame.begin() + kSamplesFromFrame, frame.end(),
delay_buffer.begin());
}
// Computes the energy of an extended frame.
float ComputeEnergyOfExtendedFrame(ArrayView<const float, kFftSize> x) {
float energy = 0.f;
for (float x_k : x) {
energy += x_k * x_k;
}
return energy;
}
// Computes the energy of an extended frame based on its subcomponents.
float ComputeEnergyOfExtendedFrame(
ArrayView<const float, kNsFrameSize> frame,
ArrayView<float, kFftSize - kNsFrameSize> old_data) {
float energy = 0.f;
for (float v : old_data) {
energy += v * v;
}
for (float v : frame) {
energy += v * v;
}
return energy;
}
// Computes the magnitude spectrum based on an FFT output.
void ComputeMagnitudeSpectrum(
ArrayView<const float, kFftSize> real,
ArrayView<const float, kFftSize> imag,
ArrayView<float, kFftSizeBy2Plus1> signal_spectrum) {
signal_spectrum[0] = fabsf(real[0]) + 1.f;
signal_spectrum[kFftSizeBy2Plus1 - 1] =
fabsf(real[kFftSizeBy2Plus1 - 1]) + 1.f;
for (size_t i = 1; i < kFftSizeBy2Plus1 - 1; ++i) {
signal_spectrum[i] =
SqrtFastApproximation(real[i] * real[i] + imag[i] * imag[i]) + 1.f;
}
}
// Compute prior and post SNR.
void ComputeSnr(ArrayView<const float, kFftSizeBy2Plus1> filter,
ArrayView<const float> prev_signal_spectrum,
ArrayView<const float> signal_spectrum,
ArrayView<const float> prev_noise_spectrum,
ArrayView<const float> noise_spectrum,
ArrayView<float> prior_snr,
ArrayView<float> post_snr) {
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
// Previous post SNR.
// Previous estimate: based on previous frame with gain filter.
float prev_estimate = prev_signal_spectrum[i] /
(prev_noise_spectrum[i] + 0.0001f) * filter[i];
// Post SNR.
if (signal_spectrum[i] > noise_spectrum[i]) {
post_snr[i] = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f;
} else {
post_snr[i] = 0.f;
}
// The directed decision estimate of the prior SNR is a sum the current and
// previous estimates.
prior_snr[i] = 0.98f * prev_estimate + (1.f - 0.98f) * post_snr[i];
}
}
// Computes the attenuating gain for the noise suppression of the upper bands.
float ComputeUpperBandsGain(
float minimum_attenuating_gain,
ArrayView<const float, kFftSizeBy2Plus1> filter,
ArrayView<const float> speech_probability,
ArrayView<const float, kFftSizeBy2Plus1> prev_analysis_signal_spectrum,
ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) {
// Average speech prob and filter gain for the end of the lowest band.
constexpr int kNumAvgBins = 32;
constexpr float kOneByNumAvgBins = 1.f / kNumAvgBins;
float avg_prob_speech = 0.f;
float avg_filter_gain = 0.f;
for (size_t i = kFftSizeBy2Plus1 - kNumAvgBins - 1; i < kFftSizeBy2Plus1 - 1;
i++) {
avg_prob_speech += speech_probability[i];
avg_filter_gain += filter[i];
}
avg_prob_speech = avg_prob_speech * kOneByNumAvgBins;
avg_filter_gain = avg_filter_gain * kOneByNumAvgBins;
// If the speech was suppressed by a component between Analyze and Process, an
// example being by an AEC, it should not be considered speech for the purpose
// of high band suppression. To that end, the speech probability is scaled
// accordingly.
float sum_analysis_spectrum = 0.f;
float sum_processing_spectrum = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
sum_analysis_spectrum += prev_analysis_signal_spectrum[i];
sum_processing_spectrum += signal_spectrum[i];
}
// The magnitude spectrum computation enforces the spectrum to be strictly
// positive.
RTC_DCHECK_GT(sum_analysis_spectrum, 0.f);
avg_prob_speech *= sum_processing_spectrum / sum_analysis_spectrum;
// Compute gain based on speech probability.
float gain =
0.5f * (1.f + static_cast<float>(tanh(2.f * avg_prob_speech - 1.f)));
// Combine gain with low band gain.
if (avg_prob_speech >= 0.5f) {
gain = 0.25f * gain + 0.75f * avg_filter_gain;
} else {
gain = 0.5f * gain + 0.5f * avg_filter_gain;
}
// Make sure gain is within flooring range.
return std::min(std::max(gain, minimum_attenuating_gain), 1.f);
}
} // namespace
NoiseSuppressor::ChannelState::ChannelState(
const SuppressionParams& suppression_params,
size_t num_bands)
: wiener_filter(suppression_params),
noise_estimator(suppression_params),
process_delay_memory(num_bands > 1 ? num_bands - 1 : 0) {
analyze_analysis_memory.fill(0.f);
prev_analysis_signal_spectrum.fill(1.f);
process_analysis_memory.fill(0.f);
process_synthesis_memory.fill(0.f);
for (auto& d : process_delay_memory) {
d.fill(0.f);
}
}
NoiseSuppressor::NoiseSuppressor(const NsConfig& config,
size_t sample_rate_hz,
size_t num_channels)
: num_bands_(NumBandsForRate(sample_rate_hz)),
num_channels_(num_channels),
suppression_params_(config.target_level),
filter_bank_states_heap_(NumChannelsOnHeap(num_channels_)),
upper_band_gains_heap_(NumChannelsOnHeap(num_channels_)),
energies_before_filtering_heap_(NumChannelsOnHeap(num_channels_)),
gain_adjustments_heap_(NumChannelsOnHeap(num_channels_)),
channels_(num_channels_) {
for (size_t ch = 0; ch < num_channels_; ++ch) {
channels_[ch] =
std::make_unique<ChannelState>(suppression_params_, num_bands_);
}
}
void NoiseSuppressor::AggregateWienerFilters(
ArrayView<float, kFftSizeBy2Plus1> filter) const {
ArrayView<const float, kFftSizeBy2Plus1> filter0 =
channels_[0]->wiener_filter.get_filter();
std::copy(filter0.begin(), filter0.end(), filter.begin());
for (size_t ch = 1; ch < num_channels_; ++ch) {
ArrayView<const float, kFftSizeBy2Plus1> filter_ch =
channels_[ch]->wiener_filter.get_filter();
for (size_t k = 0; k < kFftSizeBy2Plus1; ++k) {
filter[k] = std::min(filter[k], filter_ch[k]);
}
}
}
void NoiseSuppressor::Analyze(const AudioBuffer& audio) {
// Prepare the noise estimator for the analysis stage.
for (size_t ch = 0; ch < num_channels_; ++ch) {
channels_[ch]->noise_estimator.PrepareAnalysis();
}
// Check for zero frames.
bool zero_frame = true;
for (size_t ch = 0; ch < num_channels_; ++ch) {
ArrayView<const float, kNsFrameSize> y_band0(
&audio.split_bands_const(ch)[0][0], kNsFrameSize);
float energy = ComputeEnergyOfExtendedFrame(
y_band0, channels_[ch]->analyze_analysis_memory);
if (energy > 0.f) {
zero_frame = false;
break;
}
}
if (zero_frame) {
// We want to avoid updating statistics in this case:
// Updating feature statistics when we have zeros only will cause
// thresholds to move towards zero signal situations. This in turn has the
// effect that once the signal is "turned on" (non-zero values) everything
// will be treated as speech and there is no noise suppression effect.
// Depending on the duration of the inactive signal it takes a
// considerable amount of time for the system to learn what is noise and
// what is speech.
return;
}
// Only update analysis counter for frames that are properly analyzed.
if (++num_analyzed_frames_ < 0) {
num_analyzed_frames_ = 0;
}
// Analyze all channels.
for (size_t ch = 0; ch < num_channels_; ++ch) {
std::unique_ptr<ChannelState>& ch_p = channels_[ch];
ArrayView<const float, kNsFrameSize> y_band0(
&audio.split_bands_const(ch)[0][0], kNsFrameSize);
// Form an extended frame and apply analysis filter bank windowing.
std::array<float, kFftSize> extended_frame;
FormExtendedFrame(y_band0, ch_p->analyze_analysis_memory, extended_frame);
ApplyFilterBankWindow(extended_frame);
// Compute the magnitude spectrum.
std::array<float, kFftSize> real;
std::array<float, kFftSize> imag;
fft_.Fft(extended_frame, real, imag);
std::array<float, kFftSizeBy2Plus1> signal_spectrum;
ComputeMagnitudeSpectrum(real, imag, signal_spectrum);
// Compute energies.
float signal_energy = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
signal_energy += real[i] * real[i] + imag[i] * imag[i];
}
signal_energy /= kFftSizeBy2Plus1;
float signal_spectral_sum = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
signal_spectral_sum += signal_spectrum[i];
}
// Estimate the noise spectra and the probability estimates of speech
// presence.
ch_p->noise_estimator.PreUpdate(num_analyzed_frames_, signal_spectrum,
signal_spectral_sum);
std::array<float, kFftSizeBy2Plus1> post_snr;
std::array<float, kFftSizeBy2Plus1> prior_snr;
ComputeSnr(ch_p->wiener_filter.get_filter(),
ch_p->prev_analysis_signal_spectrum, signal_spectrum,
ch_p->noise_estimator.get_prev_noise_spectrum(),
ch_p->noise_estimator.get_noise_spectrum(), prior_snr, post_snr);
ch_p->speech_probability_estimator.Update(
num_analyzed_frames_, prior_snr, post_snr,
ch_p->noise_estimator.get_conservative_noise_spectrum(),
signal_spectrum, signal_spectral_sum, signal_energy);
ch_p->noise_estimator.PostUpdate(
ch_p->speech_probability_estimator.get_probability(), signal_spectrum);
// Store the magnitude spectrum to make it avalilable for the process
// method.
std::copy(signal_spectrum.begin(), signal_spectrum.end(),
ch_p->prev_analysis_signal_spectrum.begin());
}
}
void NoiseSuppressor::Process(AudioBuffer* audio) {
// Select the space for storing data during the processing.
std::array<FilterBankState, kMaxNumChannelsOnStack> filter_bank_states_stack;
ArrayView<FilterBankState> filter_bank_states(filter_bank_states_stack.data(),
num_channels_);
std::array<float, kMaxNumChannelsOnStack> upper_band_gains_stack;
ArrayView<float> upper_band_gains(upper_band_gains_stack.data(),
num_channels_);
std::array<float, kMaxNumChannelsOnStack> energies_before_filtering_stack;
ArrayView<float> energies_before_filtering(
energies_before_filtering_stack.data(), num_channels_);
std::array<float, kMaxNumChannelsOnStack> gain_adjustments_stack;
ArrayView<float> gain_adjustments(gain_adjustments_stack.data(),
num_channels_);
if (NumChannelsOnHeap(num_channels_) > 0) {
// If the stack-allocated space is too small, use the heap for storing the
// data.
filter_bank_states = ArrayView<FilterBankState>(
filter_bank_states_heap_.data(), num_channels_);
upper_band_gains =
ArrayView<float>(upper_band_gains_heap_.data(), num_channels_);
energies_before_filtering =
ArrayView<float>(energies_before_filtering_heap_.data(), num_channels_);
gain_adjustments =
ArrayView<float>(gain_adjustments_heap_.data(), num_channels_);
}
// Compute the suppression filters for all channels.
for (size_t ch = 0; ch < num_channels_; ++ch) {
// Form an extended frame and apply analysis filter bank windowing.
ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0],
kNsFrameSize);
FormExtendedFrame(y_band0, channels_[ch]->process_analysis_memory,
filter_bank_states[ch].extended_frame);
ApplyFilterBankWindow(filter_bank_states[ch].extended_frame);
energies_before_filtering[ch] =
ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame);
// Perform filter bank analysis and compute the magnitude spectrum.
fft_.Fft(filter_bank_states[ch].extended_frame, filter_bank_states[ch].real,
filter_bank_states[ch].imag);
std::array<float, kFftSizeBy2Plus1> signal_spectrum;
ComputeMagnitudeSpectrum(filter_bank_states[ch].real,
filter_bank_states[ch].imag, signal_spectrum);
// Compute the frequency domain gain filter for noise attenuation.
channels_[ch]->wiener_filter.Update(
num_analyzed_frames_,
channels_[ch]->noise_estimator.get_noise_spectrum(),
channels_[ch]->noise_estimator.get_prev_noise_spectrum(),
channels_[ch]->noise_estimator.get_parametric_noise_spectrum(),
signal_spectrum);
if (num_bands_ > 1) {
// Compute the time-domain gain for attenuating the noise in the upper
// bands.
upper_band_gains[ch] = ComputeUpperBandsGain(
suppression_params_.minimum_attenuating_gain,
channels_[ch]->wiener_filter.get_filter(),
channels_[ch]->speech_probability_estimator.get_probability(),
channels_[ch]->prev_analysis_signal_spectrum, signal_spectrum);
}
}
// Only do the below processing if the output of the audio processing module
// is used.
if (!capture_output_used_) {
return;
}
// Aggregate the Wiener filters for all channels.
std::array<float, kFftSizeBy2Plus1> filter_data;
ArrayView<const float, kFftSizeBy2Plus1> filter = filter_data;
if (num_channels_ == 1) {
filter = channels_[0]->wiener_filter.get_filter();
} else {
AggregateWienerFilters(filter_data);
}
for (size_t ch = 0; ch < num_channels_; ++ch) {
// Apply the filter to the lower band.
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
filter_bank_states[ch].real[i] *= filter[i];
filter_bank_states[ch].imag[i] *= filter[i];
}
}
// Perform filter bank synthesis
for (size_t ch = 0; ch < num_channels_; ++ch) {
fft_.Ifft(filter_bank_states[ch].real, filter_bank_states[ch].imag,
filter_bank_states[ch].extended_frame);
}
for (size_t ch = 0; ch < num_channels_; ++ch) {
const float energy_after_filtering =
ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame);
// Apply synthesis window.
ApplyFilterBankWindow(filter_bank_states[ch].extended_frame);
// Compute the adjustment of the noise attenuation filter based on the
// effect of the attenuation.
gain_adjustments[ch] =
channels_[ch]->wiener_filter.ComputeOverallScalingFactor(
num_analyzed_frames_,
channels_[ch]->speech_probability_estimator.get_prior_probability(),
energies_before_filtering[ch], energy_after_filtering);
}
// Select and apply adjustment of the noise attenuation filter based on the
// effect of the attenuation.
float gain_adjustment = gain_adjustments[0];
for (size_t ch = 1; ch < num_channels_; ++ch) {
gain_adjustment = std::min(gain_adjustment, gain_adjustments[ch]);
}
for (size_t ch = 0; ch < num_channels_; ++ch) {
for (size_t i = 0; i < kFftSize; ++i) {
filter_bank_states[ch].extended_frame[i] =
gain_adjustment * filter_bank_states[ch].extended_frame[i];
}
}
// Use overlap-and-add to form the output frame of the lowest band.
for (size_t ch = 0; ch < num_channels_; ++ch) {
ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0],
kNsFrameSize);
OverlapAndAdd(filter_bank_states[ch].extended_frame,
channels_[ch]->process_synthesis_memory, y_band0);
}
if (num_bands_ > 1) {
// Select the noise attenuating gain to apply to the upper band.
float upper_band_gain = upper_band_gains[0];
for (size_t ch = 1; ch < num_channels_; ++ch) {
upper_band_gain = std::min(upper_band_gain, upper_band_gains[ch]);
}
// Process the upper bands.
for (size_t ch = 0; ch < num_channels_; ++ch) {
for (size_t b = 1; b < num_bands_; ++b) {
// Delay the upper bands to match the delay of the filterbank applied to
// the lowest band.
ArrayView<float, kNsFrameSize> y_band(&audio->split_bands(ch)[b][0],
kNsFrameSize);
std::array<float, kNsFrameSize> delayed_frame;
DelaySignal(y_band, channels_[ch]->process_delay_memory[b - 1],
delayed_frame);
// Apply the time-domain noise-attenuating gain.
for (size_t j = 0; j < kNsFrameSize; j++) {
y_band[j] = upper_band_gain * delayed_frame[j];
}
}
}
}
// Limit the output the allowed range.
for (size_t ch = 0; ch < num_channels_; ++ch) {
for (size_t b = 0; b < num_bands_; ++b) {
ArrayView<float, kNsFrameSize> y_band(&audio->split_bands(ch)[b][0],
kNsFrameSize);
for (size_t j = 0; j < kNsFrameSize; j++) {
y_band[j] = std::min(std::max(y_band[j], -32768.f), 32767.f);
}
}
}
}
} // namespace webrtc
|