1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/residual_echo_detector.h"
#include <vector>
#include "api/make_ref_counted.h"
#include "test/gtest.h"
namespace webrtc {
TEST(ResidualEchoDetectorTests, Echo) {
auto echo_detector = make_ref_counted<ResidualEchoDetector>();
echo_detector->SetReliabilityForTest(1.0f);
std::vector<float> ones(160, 1.f);
std::vector<float> zeros(160, 0.f);
// In this test the capture signal has a delay of 10 frames w.r.t. the render
// signal, but is otherwise identical. Both signals are periodic with a 20
// frame interval.
for (int i = 0; i < 1000; i++) {
if (i % 20 == 0) {
echo_detector->AnalyzeRenderAudio(ones);
echo_detector->AnalyzeCaptureAudio(zeros);
} else if (i % 20 == 10) {
echo_detector->AnalyzeRenderAudio(zeros);
echo_detector->AnalyzeCaptureAudio(ones);
} else {
echo_detector->AnalyzeRenderAudio(zeros);
echo_detector->AnalyzeCaptureAudio(zeros);
}
}
// We expect to detect echo with near certain likelihood.
auto ed_metrics = echo_detector->GetMetrics();
ASSERT_TRUE(ed_metrics.echo_likelihood);
EXPECT_NEAR(1.f, ed_metrics.echo_likelihood.value(), 0.01f);
}
TEST(ResidualEchoDetectorTests, NoEcho) {
auto echo_detector = make_ref_counted<ResidualEchoDetector>();
echo_detector->SetReliabilityForTest(1.0f);
std::vector<float> ones(160, 1.f);
std::vector<float> zeros(160, 0.f);
// In this test the capture signal is always zero, so no echo should be
// detected.
for (int i = 0; i < 1000; i++) {
if (i % 20 == 0) {
echo_detector->AnalyzeRenderAudio(ones);
} else {
echo_detector->AnalyzeRenderAudio(zeros);
}
echo_detector->AnalyzeCaptureAudio(zeros);
}
// We expect to not detect any echo.
auto ed_metrics = echo_detector->GetMetrics();
ASSERT_TRUE(ed_metrics.echo_likelihood);
EXPECT_NEAR(0.f, ed_metrics.echo_likelihood.value(), 0.01f);
}
TEST(ResidualEchoDetectorTests, EchoWithRenderClockDrift) {
auto echo_detector = make_ref_counted<ResidualEchoDetector>();
echo_detector->SetReliabilityForTest(1.0f);
std::vector<float> ones(160, 1.f);
std::vector<float> zeros(160, 0.f);
// In this test the capture signal has a delay of 10 frames w.r.t. the render
// signal, but is otherwise identical. Both signals are periodic with a 20
// frame interval. There is a simulated clock drift of 1% in this test, with
// the render side producing data slightly faster.
for (int i = 0; i < 1000; i++) {
if (i % 20 == 0) {
echo_detector->AnalyzeRenderAudio(ones);
echo_detector->AnalyzeCaptureAudio(zeros);
} else if (i % 20 == 10) {
echo_detector->AnalyzeRenderAudio(zeros);
echo_detector->AnalyzeCaptureAudio(ones);
} else {
echo_detector->AnalyzeRenderAudio(zeros);
echo_detector->AnalyzeCaptureAudio(zeros);
}
if (i % 100 == 0) {
// This is causing the simulated clock drift.
echo_detector->AnalyzeRenderAudio(zeros);
}
}
// We expect to detect echo with high likelihood. Clock drift is harder to
// correct on the render side than on the capture side. This is due to the
// render buffer, clock drift can only be discovered after a certain delay.
// A growing buffer can be caused by jitter or clock drift and it's not
// possible to make this decision right away. For this reason we only expect
// an echo likelihood of 75% in this test.
auto ed_metrics = echo_detector->GetMetrics();
ASSERT_TRUE(ed_metrics.echo_likelihood);
EXPECT_GT(ed_metrics.echo_likelihood.value(), 0.75f);
}
TEST(ResidualEchoDetectorTests, EchoWithCaptureClockDrift) {
auto echo_detector = make_ref_counted<ResidualEchoDetector>();
echo_detector->SetReliabilityForTest(1.0f);
std::vector<float> ones(160, 1.f);
std::vector<float> zeros(160, 0.f);
// In this test the capture signal has a delay of 10 frames w.r.t. the render
// signal, but is otherwise identical. Both signals are periodic with a 20
// frame interval. There is a simulated clock drift of 1% in this test, with
// the capture side producing data slightly faster.
for (int i = 0; i < 1000; i++) {
if (i % 20 == 0) {
echo_detector->AnalyzeRenderAudio(ones);
echo_detector->AnalyzeCaptureAudio(zeros);
} else if (i % 20 == 10) {
echo_detector->AnalyzeRenderAudio(zeros);
echo_detector->AnalyzeCaptureAudio(ones);
} else {
echo_detector->AnalyzeRenderAudio(zeros);
echo_detector->AnalyzeCaptureAudio(zeros);
}
if (i % 100 == 0) {
// This is causing the simulated clock drift.
echo_detector->AnalyzeCaptureAudio(zeros);
}
}
// We expect to detect echo with near certain likelihood.
auto ed_metrics = echo_detector->GetMetrics();
ASSERT_TRUE(ed_metrics.echo_likelihood);
EXPECT_NEAR(1.f, ed_metrics.echo_likelihood.value(), 0.01f);
}
} // namespace webrtc
|