1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/utility/pffft_wrapper.h"
#include <algorithm>
#include <cstdlib>
#include <memory>
#include "test/gtest.h"
#include "third_party/pffft/src/pffft.h"
namespace webrtc {
namespace test {
namespace {
constexpr size_t kMaxValidSizeCheck = 1024;
static constexpr int kFftSizes[] = {
16, 32, 64, 96, 128, 160, 192, 256, 288, 384, 5 * 96, 512,
576, 5 * 128, 800, 864, 1024, 2048, 2592, 4000, 4096, 12000, 36864};
void CreatePffftWrapper(size_t fft_size, Pffft::FftType fft_type) {
Pffft pffft_wrapper(fft_size, fft_type);
}
float* AllocateScratchBuffer(size_t fft_size, bool complex_fft) {
return static_cast<float*>(
pffft_aligned_malloc(fft_size * (complex_fft ? 2 : 1) * sizeof(float)));
}
double frand() {
return std::rand() / static_cast<double>(RAND_MAX);
}
void ExpectArrayViewsEquality(ArrayView<const float> a,
ArrayView<const float> b) {
ASSERT_EQ(a.size(), b.size());
for (size_t i = 0; i < a.size(); ++i) {
SCOPED_TRACE(i);
EXPECT_EQ(a[i], b[i]);
}
}
// Compares the output of the PFFFT C++ wrapper to that of the C PFFFT.
// Bit-exactness is expected.
void PffftValidateWrapper(size_t fft_size, bool complex_fft) {
// Always use the same seed to avoid flakiness.
std::srand(0);
// Init PFFFT.
PFFFT_Setup* pffft_status =
pffft_new_setup(fft_size, complex_fft ? PFFFT_COMPLEX : PFFFT_REAL);
ASSERT_TRUE(pffft_status) << "FFT size (" << fft_size << ") not supported.";
size_t num_floats = fft_size * (complex_fft ? 2 : 1);
int num_bytes = static_cast<int>(num_floats) * sizeof(float);
float* in = static_cast<float*>(pffft_aligned_malloc(num_bytes));
float* out = static_cast<float*>(pffft_aligned_malloc(num_bytes));
float* scratch = AllocateScratchBuffer(fft_size, complex_fft);
// Init PFFFT C++ wrapper.
Pffft::FftType fft_type =
complex_fft ? Pffft::FftType::kComplex : Pffft::FftType::kReal;
ASSERT_TRUE(Pffft::IsValidFftSize(fft_size, fft_type));
Pffft pffft_wrapper(fft_size, fft_type);
auto in_wrapper = pffft_wrapper.CreateBuffer();
auto out_wrapper = pffft_wrapper.CreateBuffer();
// Input and output buffers views.
ArrayView<float> in_view(in, num_floats);
ArrayView<float> out_view(out, num_floats);
auto in_wrapper_view = in_wrapper->GetView();
EXPECT_EQ(in_wrapper_view.size(), num_floats);
auto out_wrapper_view = out_wrapper->GetConstView();
EXPECT_EQ(out_wrapper_view.size(), num_floats);
// Random input data.
for (size_t i = 0; i < num_floats; ++i) {
in_wrapper_view[i] = in[i] = static_cast<float>(frand() * 2.0 - 1.0);
}
// Forward transform.
pffft_transform(pffft_status, in, out, scratch, PFFFT_FORWARD);
pffft_wrapper.ForwardTransform(*in_wrapper, out_wrapper.get(),
/*ordered=*/false);
ExpectArrayViewsEquality(out_view, out_wrapper_view);
// Copy the FFT results into the input buffers to compute the backward FFT.
std::copy(out_view.begin(), out_view.end(), in_view.begin());
std::copy(out_wrapper_view.begin(), out_wrapper_view.end(),
in_wrapper_view.begin());
// Backward transform.
pffft_transform(pffft_status, in, out, scratch, PFFFT_BACKWARD);
pffft_wrapper.BackwardTransform(*in_wrapper, out_wrapper.get(),
/*ordered=*/false);
ExpectArrayViewsEquality(out_view, out_wrapper_view);
pffft_destroy_setup(pffft_status);
pffft_aligned_free(in);
pffft_aligned_free(out);
pffft_aligned_free(scratch);
}
} // namespace
TEST(PffftTest, CreateWrapperWithValidSize) {
for (size_t fft_size = 0; fft_size < kMaxValidSizeCheck; ++fft_size) {
SCOPED_TRACE(fft_size);
if (Pffft::IsValidFftSize(fft_size, Pffft::FftType::kReal)) {
CreatePffftWrapper(fft_size, Pffft::FftType::kReal);
}
if (Pffft::IsValidFftSize(fft_size, Pffft::FftType::kComplex)) {
CreatePffftWrapper(fft_size, Pffft::FftType::kComplex);
}
}
}
#if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
class PffftInvalidSizeDeathTest : public ::testing::Test,
public ::testing::WithParamInterface<size_t> {
};
TEST_P(PffftInvalidSizeDeathTest, DoNotCreateRealWrapper) {
size_t fft_size = GetParam();
ASSERT_FALSE(Pffft::IsValidFftSize(fft_size, Pffft::FftType::kReal));
EXPECT_DEATH(CreatePffftWrapper(fft_size, Pffft::FftType::kReal), "");
}
TEST_P(PffftInvalidSizeDeathTest, DoNotCreateComplexWrapper) {
size_t fft_size = GetParam();
ASSERT_FALSE(Pffft::IsValidFftSize(fft_size, Pffft::FftType::kComplex));
EXPECT_DEATH(CreatePffftWrapper(fft_size, Pffft::FftType::kComplex), "");
}
INSTANTIATE_TEST_SUITE_P(PffftTest,
PffftInvalidSizeDeathTest,
::testing::Values(17,
33,
65,
97,
129,
161,
193,
257,
289,
385,
481,
513,
577,
641,
801,
865,
1025));
#endif
// TODO(https://crbug.com/webrtc/9577): Enable once SIMD is always enabled.
TEST(PffftTest, DISABLED_CheckSimd) {
EXPECT_TRUE(Pffft::IsSimdEnabled());
}
TEST(PffftTest, FftBitExactness) {
for (int fft_size : kFftSizes) {
SCOPED_TRACE(fft_size);
if (fft_size != 16) {
PffftValidateWrapper(fft_size, /*complex_fft=*/false);
}
PffftValidateWrapper(fft_size, /*complex_fft=*/true);
}
}
} // namespace test
} // namespace webrtc
|