1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/goog_cc/trendline_estimator.h"
#include <math.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <deque>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include "absl/strings/match.h"
#include "api/field_trials_view.h"
#include "api/network_state_predictor.h"
#include "api/transport/bandwidth_usage.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
// Parameters for linear least squares fit of regression line to noisy data.
constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
constexpr double kDefaultTrendlineThresholdGain = 4.0;
const char kBweWindowSizeInPacketsExperiment[] =
"WebRTC-BweWindowSizeInPackets";
size_t ReadTrendlineFilterWindowSize(const FieldTrialsView* key_value_config) {
std::string experiment_string =
key_value_config->Lookup(kBweWindowSizeInPacketsExperiment);
size_t window_size;
int parsed_values =
sscanf(experiment_string.c_str(), "Enabled-%zu", &window_size);
if (parsed_values == 1) {
if (window_size > 1)
return window_size;
RTC_LOG(LS_WARNING) << "Window size must be greater than 1.";
}
RTC_LOG(LS_WARNING) << "Failed to parse parameters for BweWindowSizeInPackets"
" experiment from field trial string. Using default.";
return TrendlineEstimatorSettings::kDefaultTrendlineWindowSize;
}
std::optional<double> LinearFitSlope(
const std::deque<TrendlineEstimator::PacketTiming>& packets) {
RTC_DCHECK(packets.size() >= 2);
// Compute the "center of mass".
double sum_x = 0;
double sum_y = 0;
for (const auto& packet : packets) {
sum_x += packet.arrival_time_ms;
sum_y += packet.smoothed_delay_ms;
}
double x_avg = sum_x / packets.size();
double y_avg = sum_y / packets.size();
// Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
double numerator = 0;
double denominator = 0;
for (const auto& packet : packets) {
double x = packet.arrival_time_ms;
double y = packet.smoothed_delay_ms;
numerator += (x - x_avg) * (y - y_avg);
denominator += (x - x_avg) * (x - x_avg);
}
if (denominator == 0)
return std::nullopt;
return numerator / denominator;
}
std::optional<double> ComputeSlopeCap(
const std::deque<TrendlineEstimator::PacketTiming>& packets,
const TrendlineEstimatorSettings& settings) {
RTC_DCHECK(1 <= settings.beginning_packets &&
settings.beginning_packets < packets.size());
RTC_DCHECK(1 <= settings.end_packets &&
settings.end_packets < packets.size());
RTC_DCHECK(settings.beginning_packets + settings.end_packets <=
packets.size());
TrendlineEstimator::PacketTiming early = packets[0];
for (size_t i = 1; i < settings.beginning_packets; ++i) {
if (packets[i].raw_delay_ms < early.raw_delay_ms)
early = packets[i];
}
size_t late_start = packets.size() - settings.end_packets;
TrendlineEstimator::PacketTiming late = packets[late_start];
for (size_t i = late_start + 1; i < packets.size(); ++i) {
if (packets[i].raw_delay_ms < late.raw_delay_ms)
late = packets[i];
}
if (late.arrival_time_ms - early.arrival_time_ms < 1) {
return std::nullopt;
}
return (late.raw_delay_ms - early.raw_delay_ms) /
(late.arrival_time_ms - early.arrival_time_ms) +
settings.cap_uncertainty;
}
constexpr double kMaxAdaptOffsetMs = 15.0;
constexpr double kOverUsingTimeThreshold = 10;
constexpr int kMinNumDeltas = 60;
constexpr int kDeltaCounterMax = 1000;
} // namespace
constexpr char TrendlineEstimatorSettings::kKey[];
TrendlineEstimatorSettings::TrendlineEstimatorSettings(
const FieldTrialsView* key_value_config) {
if (absl::StartsWith(
key_value_config->Lookup(kBweWindowSizeInPacketsExperiment),
"Enabled")) {
window_size = ReadTrendlineFilterWindowSize(key_value_config);
}
Parser()->Parse(key_value_config->Lookup(TrendlineEstimatorSettings::kKey));
if (window_size < 10 || 200 < window_size) {
RTC_LOG(LS_WARNING) << "Window size must be between 10 and 200 packets";
window_size = kDefaultTrendlineWindowSize;
}
if (enable_cap) {
if (beginning_packets < 1 || end_packets < 1 ||
beginning_packets > window_size || end_packets > window_size) {
RTC_LOG(LS_WARNING) << "Size of beginning and end must be between 1 and "
<< window_size;
enable_cap = false;
beginning_packets = end_packets = 0;
cap_uncertainty = 0.0;
}
if (beginning_packets + end_packets > window_size) {
RTC_LOG(LS_WARNING)
<< "Size of beginning plus end can't exceed the window size";
enable_cap = false;
beginning_packets = end_packets = 0;
cap_uncertainty = 0.0;
}
if (cap_uncertainty < 0.0 || 0.025 < cap_uncertainty) {
RTC_LOG(LS_WARNING) << "Cap uncertainty must be between 0 and 0.025";
cap_uncertainty = 0.0;
}
}
}
std::unique_ptr<StructParametersParser> TrendlineEstimatorSettings::Parser() {
return StructParametersParser::Create("sort", &enable_sort, //
"cap", &enable_cap, //
"beginning_packets",
&beginning_packets, //
"end_packets", &end_packets, //
"cap_uncertainty", &cap_uncertainty, //
"window_size", &window_size);
}
TrendlineEstimator::TrendlineEstimator(
const FieldTrialsView* key_value_config,
NetworkStatePredictor* network_state_predictor)
: settings_(key_value_config),
smoothing_coef_(kDefaultTrendlineSmoothingCoeff),
threshold_gain_(kDefaultTrendlineThresholdGain),
num_of_deltas_(0),
first_arrival_time_ms_(-1),
accumulated_delay_(0),
smoothed_delay_(0),
delay_hist_(),
k_up_(0.0087),
k_down_(0.039),
overusing_time_threshold_(kOverUsingTimeThreshold),
threshold_(12.5),
prev_modified_trend_(NAN),
last_update_ms_(-1),
prev_trend_(0.0),
time_over_using_(-1),
overuse_counter_(0),
hypothesis_(BandwidthUsage::kBwNormal),
hypothesis_predicted_(BandwidthUsage::kBwNormal),
network_state_predictor_(network_state_predictor) {
RTC_LOG(LS_INFO)
<< "Using Trendline filter for delay change estimation with settings "
<< settings_.Parser()->Encode() << " and "
<< (network_state_predictor_ ? "injected" : "no")
<< " network state predictor";
}
TrendlineEstimator::~TrendlineEstimator() {}
void TrendlineEstimator::UpdateTrendline(double recv_delta_ms,
double send_delta_ms,
int64_t /* send_time_ms */,
int64_t arrival_time_ms,
size_t /* packet_size */) {
const double delta_ms = recv_delta_ms - send_delta_ms;
++num_of_deltas_;
num_of_deltas_ = std::min(num_of_deltas_, kDeltaCounterMax);
if (first_arrival_time_ms_ == -1)
first_arrival_time_ms_ = arrival_time_ms;
// Exponential backoff filter.
accumulated_delay_ += delta_ms;
smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
(1 - smoothing_coef_) * accumulated_delay_;
// Maintain packet window
delay_hist_.emplace_back(
static_cast<double>(arrival_time_ms - first_arrival_time_ms_),
smoothed_delay_, accumulated_delay_);
if (settings_.enable_sort) {
for (size_t i = delay_hist_.size() - 1;
i > 0 &&
delay_hist_[i].arrival_time_ms < delay_hist_[i - 1].arrival_time_ms;
--i) {
std::swap(delay_hist_[i], delay_hist_[i - 1]);
}
}
if (delay_hist_.size() > settings_.window_size)
delay_hist_.pop_front();
// Simple linear regression.
double trend = prev_trend_;
if (delay_hist_.size() == settings_.window_size) {
// Update trend_ if it is possible to fit a line to the data. The delay
// trend can be seen as an estimate of (send_rate - capacity)/capacity.
// 0 < trend < 1 -> the delay increases, queues are filling up
// trend == 0 -> the delay does not change
// trend < 0 -> the delay decreases, queues are being emptied
trend = LinearFitSlope(delay_hist_).value_or(trend);
if (settings_.enable_cap) {
std::optional<double> cap = ComputeSlopeCap(delay_hist_, settings_);
// We only use the cap to filter out overuse detections, not
// to detect additional underuses.
if (trend >= 0 && cap.has_value() && trend > cap.value()) {
trend = cap.value();
}
}
}
Detect(trend, send_delta_ms, arrival_time_ms);
}
void TrendlineEstimator::Update(double recv_delta_ms,
double send_delta_ms,
int64_t send_time_ms,
int64_t arrival_time_ms,
size_t packet_size,
bool calculated_deltas) {
if (calculated_deltas) {
UpdateTrendline(recv_delta_ms, send_delta_ms, send_time_ms, arrival_time_ms,
packet_size);
}
if (network_state_predictor_) {
hypothesis_predicted_ = network_state_predictor_->Update(
send_time_ms, arrival_time_ms, hypothesis_);
}
}
BandwidthUsage TrendlineEstimator::State() const {
return network_state_predictor_ ? hypothesis_predicted_ : hypothesis_;
}
void TrendlineEstimator::Detect(double trend, double ts_delta, int64_t now_ms) {
if (num_of_deltas_ < 2) {
hypothesis_ = BandwidthUsage::kBwNormal;
return;
}
const double modified_trend =
std::min(num_of_deltas_, kMinNumDeltas) * trend * threshold_gain_;
prev_modified_trend_ = modified_trend;
if (modified_trend > threshold_) {
if (time_over_using_ == -1) {
// Initialize the timer. Assume that we've been
// over-using half of the time since the previous
// sample.
time_over_using_ = ts_delta / 2;
} else {
// Increment timer
time_over_using_ += ts_delta;
}
overuse_counter_++;
if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) {
if (trend >= prev_trend_) {
time_over_using_ = 0;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwOverusing;
}
}
} else if (modified_trend < -threshold_) {
time_over_using_ = -1;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwUnderusing;
} else {
time_over_using_ = -1;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwNormal;
}
prev_trend_ = trend;
UpdateThreshold(modified_trend, now_ms);
}
void TrendlineEstimator::UpdateThreshold(double modified_trend,
int64_t now_ms) {
if (last_update_ms_ == -1)
last_update_ms_ = now_ms;
if (fabs(modified_trend) > threshold_ + kMaxAdaptOffsetMs) {
// Avoid adapting the threshold to big latency spikes, caused e.g.,
// by a sudden capacity drop.
last_update_ms_ = now_ms;
return;
}
const double k = fabs(modified_trend) < threshold_ ? k_down_ : k_up_;
const int64_t kMaxTimeDeltaMs = 100;
int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs);
threshold_ += k * (fabs(modified_trend) - threshold_) * time_delta_ms;
threshold_ = SafeClamp(threshold_, 6.f, 600.f);
last_update_ms_ = now_ms;
}
} // namespace webrtc
|