File: prioritized_packet_queue.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (469 lines) | stat: -rw-r--r-- 17,232 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
 *  Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/pacing/prioritized_packet_queue.h"

#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <memory>
#include <optional>
#include <utility>

#include "absl/container/inlined_vector.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"

namespace webrtc {
namespace {

constexpr int kAudioPrioLevel = 0;

int GetPriorityForType(
    RtpPacketMediaType type,
    std::optional<RtpPacketToSend::OriginalType> original_type) {
  // Lower number takes priority over higher.
  switch (type) {
    case RtpPacketMediaType::kAudio:
      // Audio is always prioritized over other packet types.
      return kAudioPrioLevel;
    case RtpPacketMediaType::kRetransmission:
      // Send retransmissions before new media. If original_type is set, audio
      // retransmission is prioritized more than video retransmission.
      if (original_type == RtpPacketToSend::OriginalType::kVideo) {
        return kAudioPrioLevel + 2;
      }
      return kAudioPrioLevel + 1;
    case RtpPacketMediaType::kVideo:
    case RtpPacketMediaType::kForwardErrorCorrection:
      // Video has "normal" priority, in the old speak.
      // Send redundancy concurrently to video. If it is delayed it might have a
      // lower chance of being useful.
      return kAudioPrioLevel + 3;
    case RtpPacketMediaType::kPadding:
      // Packets that are in themselves likely useless, only sent to keep the
      // BWE high.
      return kAudioPrioLevel + 4;
  }
  RTC_CHECK_NOTREACHED();
}

}  // namespace

absl::InlinedVector<TimeDelta, PrioritizedPacketQueue::kNumPriorityLevels>
PrioritizedPacketQueue::ToTtlPerPrio(PacketQueueTTL packet_queue_ttl) {
  absl::InlinedVector<TimeDelta, PrioritizedPacketQueue::kNumPriorityLevels>
      ttl_per_prio(kNumPriorityLevels, TimeDelta::PlusInfinity());
  ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kRetransmission,
                                  RtpPacketToSend::OriginalType::kAudio)] =
      packet_queue_ttl.audio_retransmission;
  ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kRetransmission,
                                  RtpPacketToSend::OriginalType::kVideo)] =
      packet_queue_ttl.video_retransmission;
  ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kVideo, std::nullopt)] =
      packet_queue_ttl.video;
  return ttl_per_prio;
}

DataSize PrioritizedPacketQueue::QueuedPacket::PacketSize() const {
  return DataSize::Bytes(packet->payload_size() + packet->padding_size());
}

PrioritizedPacketQueue::StreamQueue::StreamQueue(Timestamp creation_time)
    : last_enqueue_time_(creation_time), num_keyframe_packets_(0) {}

bool PrioritizedPacketQueue::StreamQueue::EnqueuePacket(QueuedPacket packet,
                                                        int priority_level) {
  if (packet.packet->is_key_frame()) {
    ++num_keyframe_packets_;
  }
  bool first_packet_at_level = packets_[priority_level].empty();
  packets_[priority_level].push_back(std::move(packet));
  return first_packet_at_level;
}

PrioritizedPacketQueue::QueuedPacket
PrioritizedPacketQueue::StreamQueue::DequeuePacket(int priority_level) {
  RTC_DCHECK(!packets_[priority_level].empty());
  QueuedPacket packet = std::move(packets_[priority_level].front());
  packets_[priority_level].pop_front();
  if (packet.packet->is_key_frame()) {
    RTC_DCHECK_GT(num_keyframe_packets_, 0);
    --num_keyframe_packets_;
  }
  return packet;
}

bool PrioritizedPacketQueue::StreamQueue::HasPacketsAtPrio(
    int priority_level) const {
  return !packets_[priority_level].empty();
}

bool PrioritizedPacketQueue::StreamQueue::IsEmpty() const {
  for (const std::deque<QueuedPacket>& queue : packets_) {
    if (!queue.empty()) {
      return false;
    }
  }
  return true;
}

Timestamp PrioritizedPacketQueue::StreamQueue::LeadingPacketEnqueueTime(
    int priority_level) const {
  RTC_DCHECK(!packets_[priority_level].empty());
  return packets_[priority_level].begin()->enqueue_time;
}

Timestamp PrioritizedPacketQueue::StreamQueue::LastEnqueueTime() const {
  return last_enqueue_time_;
}

std::array<std::deque<PrioritizedPacketQueue::QueuedPacket>,
           PrioritizedPacketQueue::kNumPriorityLevels>
PrioritizedPacketQueue::StreamQueue::DequeueAll() {
  std::array<std::deque<QueuedPacket>, kNumPriorityLevels> packets_by_prio;
  for (int i = 0; i < kNumPriorityLevels; ++i) {
    packets_by_prio[i].swap(packets_[i]);
  }
  num_keyframe_packets_ = 0;
  return packets_by_prio;
}

PrioritizedPacketQueue::PrioritizedPacketQueue(
    Timestamp creation_time,
    bool prioritize_audio_retransmission,
    PacketQueueTTL packet_queue_ttl)
    : prioritize_audio_retransmission_(prioritize_audio_retransmission),
      time_to_live_per_prio_(ToTtlPerPrio(packet_queue_ttl)),
      queue_time_sum_(TimeDelta::Zero()),
      pause_time_sum_(TimeDelta::Zero()),
      size_packets_(0),
      size_packets_per_media_type_({}),
      size_payload_(DataSize::Zero()),
      last_update_time_(creation_time),
      paused_(false),
      last_culling_time_(creation_time),
      top_active_prio_level_(-1) {}

void PrioritizedPacketQueue::Push(Timestamp enqueue_time,
                                  std::unique_ptr<RtpPacketToSend> packet) {
  StreamQueue* stream_queue;
  auto [it, inserted] = streams_.emplace(packet->Ssrc(), nullptr);
  if (inserted) {
    it->second = std::make_unique<StreamQueue>(enqueue_time);
  }
  stream_queue = it->second.get();

  auto enqueue_time_iterator =
      enqueue_times_.insert(enqueue_times_.end(), enqueue_time);
  RTC_DCHECK(packet->packet_type().has_value());
  RtpPacketMediaType packet_type = packet->packet_type().value();
  int prio_level =
      GetPriorityForType(packet_type, prioritize_audio_retransmission_
                                          ? packet->original_packet_type()
                                          : std::nullopt);
  PurgeOldPacketsAtPriorityLevel(prio_level, enqueue_time);
  RTC_DCHECK_GE(prio_level, 0);
  RTC_DCHECK_LT(prio_level, kNumPriorityLevels);
  QueuedPacket queued_packed = {.packet = std::move(packet),
                                .enqueue_time = enqueue_time,
                                .enqueue_time_iterator = enqueue_time_iterator};
  // In order to figure out how much time a packet has spent in the queue
  // while not in a paused state, we subtract the total amount of time the
  // queue has been paused so far, and when the packet is popped we subtract
  // the total amount of time the queue has been paused at that moment. This
  // way we subtract the total amount of time the packet has spent in the
  // queue while in a paused state.
  UpdateAverageQueueTime(enqueue_time);
  queued_packed.enqueue_time -= pause_time_sum_;
  ++size_packets_;
  ++size_packets_per_media_type_[static_cast<size_t>(packet_type)];
  size_payload_ += queued_packed.PacketSize();

  if (stream_queue->EnqueuePacket(std::move(queued_packed), prio_level)) {
    // Number packets at `prio_level` for this steam is now non-zero.
    streams_by_prio_[prio_level].push_back(stream_queue);
  }
  if (top_active_prio_level_ < 0 || prio_level < top_active_prio_level_) {
    top_active_prio_level_ = prio_level;
  }

  static constexpr TimeDelta kTimeout = TimeDelta::Millis(500);
  if (enqueue_time - last_culling_time_ > kTimeout) {
    for (auto stream_it = streams_.begin(); stream_it != streams_.end();) {
      if (stream_it->second->IsEmpty() &&
          stream_it->second->LastEnqueueTime() + kTimeout < enqueue_time) {
        streams_.erase(stream_it++);
      } else {
        ++stream_it;
      }
    }
    last_culling_time_ = enqueue_time;
  }
}

std::unique_ptr<RtpPacketToSend> PrioritizedPacketQueue::Pop() {
  if (size_packets_ == 0) {
    return nullptr;
  }

  RTC_DCHECK_GE(top_active_prio_level_, 0);
  StreamQueue& stream_queue = *streams_by_prio_[top_active_prio_level_].front();
  QueuedPacket packet = stream_queue.DequeuePacket(top_active_prio_level_);
  DequeuePacketInternal(packet);

  // Remove StreamQueue from head of fifo-queue for this prio level, and
  // and add it to the end if it still has packets.
  streams_by_prio_[top_active_prio_level_].pop_front();
  if (stream_queue.HasPacketsAtPrio(top_active_prio_level_)) {
    streams_by_prio_[top_active_prio_level_].push_back(&stream_queue);
  } else {
    MaybeUpdateTopPrioLevel();
  }

  return std::move(packet.packet);
}

int PrioritizedPacketQueue::SizeInPackets() const {
  return size_packets_;
}

DataSize PrioritizedPacketQueue::SizeInPayloadBytes() const {
  return size_payload_;
}

bool PrioritizedPacketQueue::Empty() const {
  return size_packets_ == 0;
}

const std::array<int, kNumMediaTypes>&
PrioritizedPacketQueue::SizeInPacketsPerRtpPacketMediaType() const {
  return size_packets_per_media_type_;
}

Timestamp PrioritizedPacketQueue::LeadingPacketEnqueueTime(
    RtpPacketMediaType type) const {
  RTC_DCHECK(type != RtpPacketMediaType::kRetransmission);
  const int priority_level = GetPriorityForType(type, std::nullopt);
  if (streams_by_prio_[priority_level].empty()) {
    return Timestamp::MinusInfinity();
  }
  return streams_by_prio_[priority_level].front()->LeadingPacketEnqueueTime(
      priority_level);
}

Timestamp PrioritizedPacketQueue::LeadingPacketEnqueueTimeForRetransmission()
    const {
  if (!prioritize_audio_retransmission_) {
    const int priority_level =
        GetPriorityForType(RtpPacketMediaType::kRetransmission, std::nullopt);
    if (streams_by_prio_[priority_level].empty()) {
      return Timestamp::PlusInfinity();
    }
    return streams_by_prio_[priority_level].front()->LeadingPacketEnqueueTime(
        priority_level);
  }
  const int audio_priority_level =
      GetPriorityForType(RtpPacketMediaType::kRetransmission,
                         RtpPacketToSend::OriginalType::kAudio);
  const int video_priority_level =
      GetPriorityForType(RtpPacketMediaType::kRetransmission,
                         RtpPacketToSend::OriginalType::kVideo);

  Timestamp next_audio =
      streams_by_prio_[audio_priority_level].empty()
          ? Timestamp::PlusInfinity()
          : streams_by_prio_[audio_priority_level]
                .front()
                ->LeadingPacketEnqueueTime(audio_priority_level);
  Timestamp next_video =
      streams_by_prio_[video_priority_level].empty()
          ? Timestamp::PlusInfinity()
          : streams_by_prio_[video_priority_level]
                .front()
                ->LeadingPacketEnqueueTime(video_priority_level);
  return std::min(next_audio, next_video);
}

Timestamp PrioritizedPacketQueue::OldestEnqueueTime() const {
  return enqueue_times_.empty() ? Timestamp::MinusInfinity()
                                : enqueue_times_.front();
}

TimeDelta PrioritizedPacketQueue::AverageQueueTime() const {
  if (size_packets_ == 0) {
    return TimeDelta::Zero();
  }
  return queue_time_sum_ / size_packets_;
}

void PrioritizedPacketQueue::UpdateAverageQueueTime(Timestamp now) {
  RTC_CHECK_GE(now, last_update_time_);
  if (now == last_update_time_) {
    return;
  }

  TimeDelta delta = now - last_update_time_;

  if (paused_) {
    pause_time_sum_ += delta;
  } else {
    queue_time_sum_ += delta * size_packets_;
  }

  last_update_time_ = now;
}

void PrioritizedPacketQueue::SetPauseState(bool paused, Timestamp now) {
  UpdateAverageQueueTime(now);
  paused_ = paused;
}

void PrioritizedPacketQueue::RemovePacketsForSsrc(uint32_t ssrc) {
  auto kv = streams_.find(ssrc);
  if (kv != streams_.end()) {
    // Dequeue all packets from the queue for this SSRC.
    StreamQueue& queue = *kv->second;
    std::array<std::deque<QueuedPacket>, kNumPriorityLevels> packets_by_prio =
        queue.DequeueAll();
    for (int i = 0; i < kNumPriorityLevels; ++i) {
      std::deque<QueuedPacket>& packet_queue = packets_by_prio[i];
      if (packet_queue.empty()) {
        continue;
      }

      // First erase all packets at this prio level.
      while (!packet_queue.empty()) {
        QueuedPacket packet = std::move(packet_queue.front());
        packet_queue.pop_front();
        DequeuePacketInternal(packet);
      }

      // Next, deregister this `StreamQueue` from the round-robin tables.
      RTC_DCHECK(!streams_by_prio_[i].empty());
      if (streams_by_prio_[i].size() == 1) {
        // This is the last and only queue that had packets for this prio level.
        // Update the global top prio level if neccessary.
        RTC_DCHECK(streams_by_prio_[i].front() == &queue);
        streams_by_prio_[i].pop_front();
      } else {
        // More than stream had packets at this prio level, filter this one out.
        std::deque<StreamQueue*> filtered_queue;
        for (StreamQueue* queue_ptr : streams_by_prio_[i]) {
          if (queue_ptr != &queue) {
            filtered_queue.push_back(queue_ptr);
          }
        }
        streams_by_prio_[i].swap(filtered_queue);
      }
    }
  }
  MaybeUpdateTopPrioLevel();
}

bool PrioritizedPacketQueue::HasKeyframePackets(uint32_t ssrc) const {
  auto it = streams_.find(ssrc);
  if (it != streams_.end()) {
    return it->second->has_keyframe_packets();
  }
  return false;
}

void PrioritizedPacketQueue::DequeuePacketInternal(QueuedPacket& packet) {
  --size_packets_;
  RTC_DCHECK(packet.packet->packet_type().has_value());
  RtpPacketMediaType packet_type = packet.packet->packet_type().value();
  --size_packets_per_media_type_[static_cast<size_t>(packet_type)];
  RTC_DCHECK_GE(size_packets_per_media_type_[static_cast<size_t>(packet_type)],
                0);
  size_payload_ -= packet.PacketSize();

  // Calculate the total amount of time spent by this packet in the queue
  // while in a non-paused state. Note that the `pause_time_sum_ms_` was
  // subtracted from `packet.enqueue_time_ms` when the packet was pushed, and
  // by subtracting it now we effectively remove the time spent in in the
  // queue while in a paused state.
  TimeDelta time_in_non_paused_state =
      last_update_time_ - packet.enqueue_time - pause_time_sum_;
  queue_time_sum_ -= time_in_non_paused_state;

  // Set the time spent in the send queue, which is the per-packet equivalent of
  // totalPacketSendDelay. The notion of being paused is an implementation
  // detail that we do not want to expose, so it makes sense to report the
  // metric excluding the pause time. This also avoids spikes in the metric.
  // https://w3c.github.io/webrtc-stats/#dom-rtcoutboundrtpstreamstats-totalpacketsenddelay
  packet.packet->set_time_in_send_queue(time_in_non_paused_state);

  RTC_DCHECK(size_packets_ > 0 || queue_time_sum_ == TimeDelta::Zero());

  RTC_CHECK(packet.enqueue_time_iterator != enqueue_times_.end());
  enqueue_times_.erase(packet.enqueue_time_iterator);
}

void PrioritizedPacketQueue::MaybeUpdateTopPrioLevel() {
  if (top_active_prio_level_ != -1 &&
      !streams_by_prio_[top_active_prio_level_].empty()) {
    return;
  }
  // No stream queues have packets at top_active_prio_level_, find top priority
  // that is not empty.
  for (int i = 0; i < kNumPriorityLevels; ++i) {
    PurgeOldPacketsAtPriorityLevel(i, last_update_time_);
    if (!streams_by_prio_[i].empty()) {
      top_active_prio_level_ = i;
      break;
    }
  }
  if (size_packets_ == 0) {
    // There are no packets left to send. Last packet may have been purged. Prio
    // will change when a new packet is pushed.
    top_active_prio_level_ = -1;
  }
}

void PrioritizedPacketQueue::PurgeOldPacketsAtPriorityLevel(int prio_level,
                                                            Timestamp now) {
  RTC_DCHECK(prio_level >= 0 && prio_level < kNumPriorityLevels);
  TimeDelta time_to_live = time_to_live_per_prio_[prio_level];
  if (time_to_live.IsInfinite()) {
    return;
  }

  std::deque<StreamQueue*>& queues = streams_by_prio_[prio_level];
  auto iter = queues.begin();
  while (iter != queues.end()) {
    StreamQueue* queue_ptr = *iter;
    while (queue_ptr->HasPacketsAtPrio(prio_level) &&
           (now - queue_ptr->LeadingPacketEnqueueTime(prio_level)) >
               time_to_live) {
      QueuedPacket packet = queue_ptr->DequeuePacket(prio_level);
      RTC_LOG(LS_INFO) << "Dropping old packet on SSRC: "
                       << packet.packet->Ssrc()
                       << " seq:" << packet.packet->SequenceNumber()
                       << " time in queue:" << (now - packet.enqueue_time).ms()
                       << " ms";
      DequeuePacketInternal(packet);
    }
    if (!queue_ptr->HasPacketsAtPrio(prio_level)) {
      iter = queues.erase(iter);
    } else {
      ++iter;
    }
  }
}

}  // namespace webrtc