1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/prioritized_packet_queue.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <memory>
#include <optional>
#include <utility>
#include "absl/container/inlined_vector.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace {
constexpr int kAudioPrioLevel = 0;
int GetPriorityForType(
RtpPacketMediaType type,
std::optional<RtpPacketToSend::OriginalType> original_type) {
// Lower number takes priority over higher.
switch (type) {
case RtpPacketMediaType::kAudio:
// Audio is always prioritized over other packet types.
return kAudioPrioLevel;
case RtpPacketMediaType::kRetransmission:
// Send retransmissions before new media. If original_type is set, audio
// retransmission is prioritized more than video retransmission.
if (original_type == RtpPacketToSend::OriginalType::kVideo) {
return kAudioPrioLevel + 2;
}
return kAudioPrioLevel + 1;
case RtpPacketMediaType::kVideo:
case RtpPacketMediaType::kForwardErrorCorrection:
// Video has "normal" priority, in the old speak.
// Send redundancy concurrently to video. If it is delayed it might have a
// lower chance of being useful.
return kAudioPrioLevel + 3;
case RtpPacketMediaType::kPadding:
// Packets that are in themselves likely useless, only sent to keep the
// BWE high.
return kAudioPrioLevel + 4;
}
RTC_CHECK_NOTREACHED();
}
} // namespace
absl::InlinedVector<TimeDelta, PrioritizedPacketQueue::kNumPriorityLevels>
PrioritizedPacketQueue::ToTtlPerPrio(PacketQueueTTL packet_queue_ttl) {
absl::InlinedVector<TimeDelta, PrioritizedPacketQueue::kNumPriorityLevels>
ttl_per_prio(kNumPriorityLevels, TimeDelta::PlusInfinity());
ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kRetransmission,
RtpPacketToSend::OriginalType::kAudio)] =
packet_queue_ttl.audio_retransmission;
ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kRetransmission,
RtpPacketToSend::OriginalType::kVideo)] =
packet_queue_ttl.video_retransmission;
ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kVideo, std::nullopt)] =
packet_queue_ttl.video;
return ttl_per_prio;
}
DataSize PrioritizedPacketQueue::QueuedPacket::PacketSize() const {
return DataSize::Bytes(packet->payload_size() + packet->padding_size());
}
PrioritizedPacketQueue::StreamQueue::StreamQueue(Timestamp creation_time)
: last_enqueue_time_(creation_time), num_keyframe_packets_(0) {}
bool PrioritizedPacketQueue::StreamQueue::EnqueuePacket(QueuedPacket packet,
int priority_level) {
if (packet.packet->is_key_frame()) {
++num_keyframe_packets_;
}
bool first_packet_at_level = packets_[priority_level].empty();
packets_[priority_level].push_back(std::move(packet));
return first_packet_at_level;
}
PrioritizedPacketQueue::QueuedPacket
PrioritizedPacketQueue::StreamQueue::DequeuePacket(int priority_level) {
RTC_DCHECK(!packets_[priority_level].empty());
QueuedPacket packet = std::move(packets_[priority_level].front());
packets_[priority_level].pop_front();
if (packet.packet->is_key_frame()) {
RTC_DCHECK_GT(num_keyframe_packets_, 0);
--num_keyframe_packets_;
}
return packet;
}
bool PrioritizedPacketQueue::StreamQueue::HasPacketsAtPrio(
int priority_level) const {
return !packets_[priority_level].empty();
}
bool PrioritizedPacketQueue::StreamQueue::IsEmpty() const {
for (const std::deque<QueuedPacket>& queue : packets_) {
if (!queue.empty()) {
return false;
}
}
return true;
}
Timestamp PrioritizedPacketQueue::StreamQueue::LeadingPacketEnqueueTime(
int priority_level) const {
RTC_DCHECK(!packets_[priority_level].empty());
return packets_[priority_level].begin()->enqueue_time;
}
Timestamp PrioritizedPacketQueue::StreamQueue::LastEnqueueTime() const {
return last_enqueue_time_;
}
std::array<std::deque<PrioritizedPacketQueue::QueuedPacket>,
PrioritizedPacketQueue::kNumPriorityLevels>
PrioritizedPacketQueue::StreamQueue::DequeueAll() {
std::array<std::deque<QueuedPacket>, kNumPriorityLevels> packets_by_prio;
for (int i = 0; i < kNumPriorityLevels; ++i) {
packets_by_prio[i].swap(packets_[i]);
}
num_keyframe_packets_ = 0;
return packets_by_prio;
}
PrioritizedPacketQueue::PrioritizedPacketQueue(
Timestamp creation_time,
bool prioritize_audio_retransmission,
PacketQueueTTL packet_queue_ttl)
: prioritize_audio_retransmission_(prioritize_audio_retransmission),
time_to_live_per_prio_(ToTtlPerPrio(packet_queue_ttl)),
queue_time_sum_(TimeDelta::Zero()),
pause_time_sum_(TimeDelta::Zero()),
size_packets_(0),
size_packets_per_media_type_({}),
size_payload_(DataSize::Zero()),
last_update_time_(creation_time),
paused_(false),
last_culling_time_(creation_time),
top_active_prio_level_(-1) {}
void PrioritizedPacketQueue::Push(Timestamp enqueue_time,
std::unique_ptr<RtpPacketToSend> packet) {
StreamQueue* stream_queue;
auto [it, inserted] = streams_.emplace(packet->Ssrc(), nullptr);
if (inserted) {
it->second = std::make_unique<StreamQueue>(enqueue_time);
}
stream_queue = it->second.get();
auto enqueue_time_iterator =
enqueue_times_.insert(enqueue_times_.end(), enqueue_time);
RTC_DCHECK(packet->packet_type().has_value());
RtpPacketMediaType packet_type = packet->packet_type().value();
int prio_level =
GetPriorityForType(packet_type, prioritize_audio_retransmission_
? packet->original_packet_type()
: std::nullopt);
PurgeOldPacketsAtPriorityLevel(prio_level, enqueue_time);
RTC_DCHECK_GE(prio_level, 0);
RTC_DCHECK_LT(prio_level, kNumPriorityLevels);
QueuedPacket queued_packed = {.packet = std::move(packet),
.enqueue_time = enqueue_time,
.enqueue_time_iterator = enqueue_time_iterator};
// In order to figure out how much time a packet has spent in the queue
// while not in a paused state, we subtract the total amount of time the
// queue has been paused so far, and when the packet is popped we subtract
// the total amount of time the queue has been paused at that moment. This
// way we subtract the total amount of time the packet has spent in the
// queue while in a paused state.
UpdateAverageQueueTime(enqueue_time);
queued_packed.enqueue_time -= pause_time_sum_;
++size_packets_;
++size_packets_per_media_type_[static_cast<size_t>(packet_type)];
size_payload_ += queued_packed.PacketSize();
if (stream_queue->EnqueuePacket(std::move(queued_packed), prio_level)) {
// Number packets at `prio_level` for this steam is now non-zero.
streams_by_prio_[prio_level].push_back(stream_queue);
}
if (top_active_prio_level_ < 0 || prio_level < top_active_prio_level_) {
top_active_prio_level_ = prio_level;
}
static constexpr TimeDelta kTimeout = TimeDelta::Millis(500);
if (enqueue_time - last_culling_time_ > kTimeout) {
for (auto stream_it = streams_.begin(); stream_it != streams_.end();) {
if (stream_it->second->IsEmpty() &&
stream_it->second->LastEnqueueTime() + kTimeout < enqueue_time) {
streams_.erase(stream_it++);
} else {
++stream_it;
}
}
last_culling_time_ = enqueue_time;
}
}
std::unique_ptr<RtpPacketToSend> PrioritizedPacketQueue::Pop() {
if (size_packets_ == 0) {
return nullptr;
}
RTC_DCHECK_GE(top_active_prio_level_, 0);
StreamQueue& stream_queue = *streams_by_prio_[top_active_prio_level_].front();
QueuedPacket packet = stream_queue.DequeuePacket(top_active_prio_level_);
DequeuePacketInternal(packet);
// Remove StreamQueue from head of fifo-queue for this prio level, and
// and add it to the end if it still has packets.
streams_by_prio_[top_active_prio_level_].pop_front();
if (stream_queue.HasPacketsAtPrio(top_active_prio_level_)) {
streams_by_prio_[top_active_prio_level_].push_back(&stream_queue);
} else {
MaybeUpdateTopPrioLevel();
}
return std::move(packet.packet);
}
int PrioritizedPacketQueue::SizeInPackets() const {
return size_packets_;
}
DataSize PrioritizedPacketQueue::SizeInPayloadBytes() const {
return size_payload_;
}
bool PrioritizedPacketQueue::Empty() const {
return size_packets_ == 0;
}
const std::array<int, kNumMediaTypes>&
PrioritizedPacketQueue::SizeInPacketsPerRtpPacketMediaType() const {
return size_packets_per_media_type_;
}
Timestamp PrioritizedPacketQueue::LeadingPacketEnqueueTime(
RtpPacketMediaType type) const {
RTC_DCHECK(type != RtpPacketMediaType::kRetransmission);
const int priority_level = GetPriorityForType(type, std::nullopt);
if (streams_by_prio_[priority_level].empty()) {
return Timestamp::MinusInfinity();
}
return streams_by_prio_[priority_level].front()->LeadingPacketEnqueueTime(
priority_level);
}
Timestamp PrioritizedPacketQueue::LeadingPacketEnqueueTimeForRetransmission()
const {
if (!prioritize_audio_retransmission_) {
const int priority_level =
GetPriorityForType(RtpPacketMediaType::kRetransmission, std::nullopt);
if (streams_by_prio_[priority_level].empty()) {
return Timestamp::PlusInfinity();
}
return streams_by_prio_[priority_level].front()->LeadingPacketEnqueueTime(
priority_level);
}
const int audio_priority_level =
GetPriorityForType(RtpPacketMediaType::kRetransmission,
RtpPacketToSend::OriginalType::kAudio);
const int video_priority_level =
GetPriorityForType(RtpPacketMediaType::kRetransmission,
RtpPacketToSend::OriginalType::kVideo);
Timestamp next_audio =
streams_by_prio_[audio_priority_level].empty()
? Timestamp::PlusInfinity()
: streams_by_prio_[audio_priority_level]
.front()
->LeadingPacketEnqueueTime(audio_priority_level);
Timestamp next_video =
streams_by_prio_[video_priority_level].empty()
? Timestamp::PlusInfinity()
: streams_by_prio_[video_priority_level]
.front()
->LeadingPacketEnqueueTime(video_priority_level);
return std::min(next_audio, next_video);
}
Timestamp PrioritizedPacketQueue::OldestEnqueueTime() const {
return enqueue_times_.empty() ? Timestamp::MinusInfinity()
: enqueue_times_.front();
}
TimeDelta PrioritizedPacketQueue::AverageQueueTime() const {
if (size_packets_ == 0) {
return TimeDelta::Zero();
}
return queue_time_sum_ / size_packets_;
}
void PrioritizedPacketQueue::UpdateAverageQueueTime(Timestamp now) {
RTC_CHECK_GE(now, last_update_time_);
if (now == last_update_time_) {
return;
}
TimeDelta delta = now - last_update_time_;
if (paused_) {
pause_time_sum_ += delta;
} else {
queue_time_sum_ += delta * size_packets_;
}
last_update_time_ = now;
}
void PrioritizedPacketQueue::SetPauseState(bool paused, Timestamp now) {
UpdateAverageQueueTime(now);
paused_ = paused;
}
void PrioritizedPacketQueue::RemovePacketsForSsrc(uint32_t ssrc) {
auto kv = streams_.find(ssrc);
if (kv != streams_.end()) {
// Dequeue all packets from the queue for this SSRC.
StreamQueue& queue = *kv->second;
std::array<std::deque<QueuedPacket>, kNumPriorityLevels> packets_by_prio =
queue.DequeueAll();
for (int i = 0; i < kNumPriorityLevels; ++i) {
std::deque<QueuedPacket>& packet_queue = packets_by_prio[i];
if (packet_queue.empty()) {
continue;
}
// First erase all packets at this prio level.
while (!packet_queue.empty()) {
QueuedPacket packet = std::move(packet_queue.front());
packet_queue.pop_front();
DequeuePacketInternal(packet);
}
// Next, deregister this `StreamQueue` from the round-robin tables.
RTC_DCHECK(!streams_by_prio_[i].empty());
if (streams_by_prio_[i].size() == 1) {
// This is the last and only queue that had packets for this prio level.
// Update the global top prio level if neccessary.
RTC_DCHECK(streams_by_prio_[i].front() == &queue);
streams_by_prio_[i].pop_front();
} else {
// More than stream had packets at this prio level, filter this one out.
std::deque<StreamQueue*> filtered_queue;
for (StreamQueue* queue_ptr : streams_by_prio_[i]) {
if (queue_ptr != &queue) {
filtered_queue.push_back(queue_ptr);
}
}
streams_by_prio_[i].swap(filtered_queue);
}
}
}
MaybeUpdateTopPrioLevel();
}
bool PrioritizedPacketQueue::HasKeyframePackets(uint32_t ssrc) const {
auto it = streams_.find(ssrc);
if (it != streams_.end()) {
return it->second->has_keyframe_packets();
}
return false;
}
void PrioritizedPacketQueue::DequeuePacketInternal(QueuedPacket& packet) {
--size_packets_;
RTC_DCHECK(packet.packet->packet_type().has_value());
RtpPacketMediaType packet_type = packet.packet->packet_type().value();
--size_packets_per_media_type_[static_cast<size_t>(packet_type)];
RTC_DCHECK_GE(size_packets_per_media_type_[static_cast<size_t>(packet_type)],
0);
size_payload_ -= packet.PacketSize();
// Calculate the total amount of time spent by this packet in the queue
// while in a non-paused state. Note that the `pause_time_sum_ms_` was
// subtracted from `packet.enqueue_time_ms` when the packet was pushed, and
// by subtracting it now we effectively remove the time spent in in the
// queue while in a paused state.
TimeDelta time_in_non_paused_state =
last_update_time_ - packet.enqueue_time - pause_time_sum_;
queue_time_sum_ -= time_in_non_paused_state;
// Set the time spent in the send queue, which is the per-packet equivalent of
// totalPacketSendDelay. The notion of being paused is an implementation
// detail that we do not want to expose, so it makes sense to report the
// metric excluding the pause time. This also avoids spikes in the metric.
// https://w3c.github.io/webrtc-stats/#dom-rtcoutboundrtpstreamstats-totalpacketsenddelay
packet.packet->set_time_in_send_queue(time_in_non_paused_state);
RTC_DCHECK(size_packets_ > 0 || queue_time_sum_ == TimeDelta::Zero());
RTC_CHECK(packet.enqueue_time_iterator != enqueue_times_.end());
enqueue_times_.erase(packet.enqueue_time_iterator);
}
void PrioritizedPacketQueue::MaybeUpdateTopPrioLevel() {
if (top_active_prio_level_ != -1 &&
!streams_by_prio_[top_active_prio_level_].empty()) {
return;
}
// No stream queues have packets at top_active_prio_level_, find top priority
// that is not empty.
for (int i = 0; i < kNumPriorityLevels; ++i) {
PurgeOldPacketsAtPriorityLevel(i, last_update_time_);
if (!streams_by_prio_[i].empty()) {
top_active_prio_level_ = i;
break;
}
}
if (size_packets_ == 0) {
// There are no packets left to send. Last packet may have been purged. Prio
// will change when a new packet is pushed.
top_active_prio_level_ = -1;
}
}
void PrioritizedPacketQueue::PurgeOldPacketsAtPriorityLevel(int prio_level,
Timestamp now) {
RTC_DCHECK(prio_level >= 0 && prio_level < kNumPriorityLevels);
TimeDelta time_to_live = time_to_live_per_prio_[prio_level];
if (time_to_live.IsInfinite()) {
return;
}
std::deque<StreamQueue*>& queues = streams_by_prio_[prio_level];
auto iter = queues.begin();
while (iter != queues.end()) {
StreamQueue* queue_ptr = *iter;
while (queue_ptr->HasPacketsAtPrio(prio_level) &&
(now - queue_ptr->LeadingPacketEnqueueTime(prio_level)) >
time_to_live) {
QueuedPacket packet = queue_ptr->DequeuePacket(prio_level);
RTC_LOG(LS_INFO) << "Dropping old packet on SSRC: "
<< packet.packet->Ssrc()
<< " seq:" << packet.packet->SequenceNumber()
<< " time in queue:" << (now - packet.enqueue_time).ms()
<< " ms";
DequeuePacketInternal(packet);
}
if (!queue_ptr->HasPacketsAtPrio(prio_level)) {
iter = queues.erase(iter);
} else {
++iter;
}
}
}
} // namespace webrtc
|