1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
#define MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
// This file contains classes for reading and writing integer types from/to
// byte array representations. Signed/unsigned, partial (whole byte) sizes,
// and big/little endian byte order is all supported.
//
// Usage examples:
//
// uint8_t* buffer = ...;
//
// // Read an unsigned 4 byte integer in big endian format
// uint32_t val = ByteReader<uint32_t>::ReadBigEndian(buffer);
//
// // Read a signed 24-bit (3 byte) integer in little endian format
// int32_t val = ByteReader<int32_t, 3>::ReadLittle(buffer);
//
// // Write an unsigned 8 byte integer in little endian format
// ByteWriter<uint64_t>::WriteLittleEndian(buffer, val);
//
// Write an unsigned 40-bit (5 byte) integer in big endian format
// ByteWriter<uint64_t, 5>::WriteBigEndian(buffer, val);
//
// These classes are implemented as recursive templetizations, intended to make
// it easy for the compiler to completely inline the reading/writing.
#include <stdint.h>
#include <limits>
namespace webrtc {
// According to ISO C standard ISO/IEC 9899, section 6.2.6.2 (2), the three
// representations of signed integers allowed are two's complement, one's
// complement and sign/magnitude. We can detect which is used by looking at
// the two last bits of -1, which will be 11 in two's complement, 10 in one's
// complement and 01 in sign/magnitude.
// TODO(sprang): In the unlikely event that we actually need to support a
// platform that doesn't use two's complement, implement conversion to/from
// wire format.
// Assume the if any one signed integer type is two's complement, then all
// other will be too.
static_assert(
(-1 & 0x03) == 0x03,
"Only two's complement representation of signed integers supported.");
// Plain const char* won't work for static_assert, use #define instead.
#define kSizeErrorMsg "Byte size must be less than or equal to data type size."
// Utility class for getting the unsigned equivalent of a signed type.
template <typename T>
struct UnsignedOf;
// Class for reading integers from a sequence of bytes.
// T = type of integer, B = bytes to read, is_signed = true if signed integer.
// If is_signed is true and B < sizeof(T), sign extension might be needed.
template <typename T,
unsigned int B = sizeof(T),
bool is_signed = std::numeric_limits<T>::is_signed>
class ByteReader;
// Specialization of ByteReader for unsigned types.
template <typename T, unsigned int B>
class ByteReader<T, B, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(B <= sizeof(T), kSizeErrorMsg);
return InternalReadBigEndian(data);
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(B <= sizeof(T), kSizeErrorMsg);
return InternalReadLittleEndian(data);
}
private:
static T InternalReadBigEndian(const uint8_t* data) {
T val(0);
for (unsigned int i = 0; i < B; ++i)
val |= static_cast<T>(data[i]) << ((B - 1 - i) * 8);
return val;
}
static T InternalReadLittleEndian(const uint8_t* data) {
T val(0);
for (unsigned int i = 0; i < B; ++i)
val |= static_cast<T>(data[i]) << (i * 8);
return val;
}
};
// Specialization of ByteReader for signed types.
template <typename T, unsigned int B>
class ByteReader<T, B, true> {
public:
typedef typename UnsignedOf<T>::Type U;
static T ReadBigEndian(const uint8_t* data) {
U unsigned_val = ByteReader<T, B, false>::ReadBigEndian(data);
if (B < sizeof(T))
unsigned_val = SignExtend(unsigned_val);
return ReinterpretAsSigned(unsigned_val);
}
static T ReadLittleEndian(const uint8_t* data) {
U unsigned_val = ByteReader<T, B, false>::ReadLittleEndian(data);
if (B < sizeof(T))
unsigned_val = SignExtend(unsigned_val);
return ReinterpretAsSigned(unsigned_val);
}
private:
// As a hack to avoid implementation-specific or undefined behavior when
// bit-shifting or casting signed integers, read as a signed equivalent
// instead and convert to signed. This is safe since we have asserted that
// two's complement for is used.
static T ReinterpretAsSigned(U unsigned_val) {
// An unsigned value with only the highest order bit set (ex 0x80).
const U kUnsignedHighestBitMask = static_cast<U>(1)
<< ((sizeof(U) * 8) - 1);
// A signed value with only the highest bit set. Since this is two's
// complement form, we can use the min value from std::numeric_limits.
const T kSignedHighestBitMask = std::numeric_limits<T>::min();
T val;
if ((unsigned_val & kUnsignedHighestBitMask) != 0) {
// Casting is only safe when unsigned value can be represented in the
// signed target type, so mask out highest bit and mask it back manually.
val = static_cast<T>(unsigned_val & ~kUnsignedHighestBitMask);
val |= kSignedHighestBitMask;
} else {
val = static_cast<T>(unsigned_val);
}
return val;
}
// If number of bytes is less than native data type (eg 24 bit, in int32_t),
// and the most significant bit of the actual data is set, we must sign
// extend the remaining byte(s) with ones so that the correct negative
// number is retained.
// Ex: 0x810A0B -> 0xFF810A0B, but 0x710A0B -> 0x00710A0B
static U SignExtend(const U val) {
const uint8_t kMsb = static_cast<uint8_t>(val >> ((B - 1) * 8));
if ((kMsb & 0x80) != 0) {
// Create a mask where all bits used by the B bytes are set to one,
// for instance 0x00FFFFFF for B = 3. Bit-wise invert that mask (to
// (0xFF000000 in the example above) and add it to the input value.
// The "B % sizeof(T)" is a workaround to undefined values warnings for
// B == sizeof(T), in which case this code won't be called anyway.
const U kUsedBitsMask = (1 << ((B % sizeof(T)) * 8)) - 1;
return ~kUsedBitsMask | val;
}
return val;
}
};
// Class for writing integers to a sequence of bytes
// T = type of integer, B = bytes to write
template <typename T,
unsigned int B = sizeof(T),
bool is_signed = std::numeric_limits<T>::is_signed>
class ByteWriter;
// Specialization of ByteWriter for unsigned types.
template <typename T, unsigned int B>
class ByteWriter<T, B, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(B <= sizeof(T), kSizeErrorMsg);
for (unsigned int i = 0; i < B; ++i) {
data[i] = val >> ((B - 1 - i) * 8);
}
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(B <= sizeof(T), kSizeErrorMsg);
for (unsigned int i = 0; i < B; ++i) {
data[i] = val >> (i * 8);
}
}
};
// Specialization of ByteWriter for signed types.
template <typename T, unsigned int B>
class ByteWriter<T, B, true> {
public:
typedef typename UnsignedOf<T>::Type U;
static void WriteBigEndian(uint8_t* data, T val) {
ByteWriter<U, B, false>::WriteBigEndian(data, ReinterpretAsUnsigned(val));
}
static void WriteLittleEndian(uint8_t* data, T val) {
ByteWriter<U, B, false>::WriteLittleEndian(data,
ReinterpretAsUnsigned(val));
}
private:
static U ReinterpretAsUnsigned(T val) {
// According to ISO C standard ISO/IEC 9899, section 6.3.1.3 (1, 2) a
// conversion from signed to unsigned keeps the value if the new type can
// represent it, and otherwise adds one more than the max value of T until
// the value is in range. For two's complement, this fortunately means
// that the bit-wise value will be intact. Thus, since we have asserted that
// two's complement form is actually used, a simple cast is sufficient.
return static_cast<U>(val);
}
};
// ----- Below follows specializations of UnsignedOf utility class -----
template <>
struct UnsignedOf<int8_t> {
typedef uint8_t Type;
};
template <>
struct UnsignedOf<int16_t> {
typedef uint16_t Type;
};
template <>
struct UnsignedOf<int32_t> {
typedef uint32_t Type;
};
template <>
struct UnsignedOf<int64_t> {
typedef uint64_t Type;
};
// ----- Below follows specializations for unsigned, B in { 1, 2, 4, 8 } -----
// TODO(sprang): Check if these actually help or if generic cases will be
// unrolled to and optimized to similar performance.
// Specializations for single bytes
template <typename T>
class ByteReader<T, 1, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(sizeof(T) == 1, kSizeErrorMsg);
return data[0];
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(sizeof(T) == 1, kSizeErrorMsg);
return data[0];
}
};
template <typename T>
class ByteWriter<T, 1, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(sizeof(T) == 1, kSizeErrorMsg);
data[0] = val;
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(sizeof(T) == 1, kSizeErrorMsg);
data[0] = val;
}
};
// Specializations for two byte words
template <typename T>
class ByteReader<T, 2, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 2, kSizeErrorMsg);
return (data[0] << 8) | data[1];
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 2, kSizeErrorMsg);
return data[0] | (data[1] << 8);
}
};
template <typename T>
class ByteWriter<T, 2, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 2, kSizeErrorMsg);
data[0] = val >> 8;
data[1] = val;
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 2, kSizeErrorMsg);
data[0] = val;
data[1] = val >> 8;
}
};
// Specializations for four byte words.
template <typename T>
class ByteReader<T, 4, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 4, kSizeErrorMsg);
return (Get(data, 0) << 24) | (Get(data, 1) << 16) | (Get(data, 2) << 8) |
Get(data, 3);
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 4, kSizeErrorMsg);
return Get(data, 0) | (Get(data, 1) << 8) | (Get(data, 2) << 16) |
(Get(data, 3) << 24);
}
private:
inline static T Get(const uint8_t* data, unsigned int index) {
return static_cast<T>(data[index]);
}
};
// Specializations for four byte words.
template <typename T>
class ByteWriter<T, 4, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 4, kSizeErrorMsg);
data[0] = val >> 24;
data[1] = val >> 16;
data[2] = val >> 8;
data[3] = val;
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 4, kSizeErrorMsg);
data[0] = val;
data[1] = val >> 8;
data[2] = val >> 16;
data[3] = val >> 24;
}
};
// Specializations for eight byte words.
template <typename T>
class ByteReader<T, 8, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 8, kSizeErrorMsg);
return (Get(data, 0) << 56) | (Get(data, 1) << 48) | (Get(data, 2) << 40) |
(Get(data, 3) << 32) | (Get(data, 4) << 24) | (Get(data, 5) << 16) |
(Get(data, 6) << 8) | Get(data, 7);
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 8, kSizeErrorMsg);
return Get(data, 0) | (Get(data, 1) << 8) | (Get(data, 2) << 16) |
(Get(data, 3) << 24) | (Get(data, 4) << 32) | (Get(data, 5) << 40) |
(Get(data, 6) << 48) | (Get(data, 7) << 56);
}
private:
inline static T Get(const uint8_t* data, unsigned int index) {
return static_cast<T>(data[index]);
}
};
template <typename T>
class ByteWriter<T, 8, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 8, kSizeErrorMsg);
data[0] = val >> 56;
data[1] = val >> 48;
data[2] = val >> 40;
data[3] = val >> 32;
data[4] = val >> 24;
data[5] = val >> 16;
data[6] = val >> 8;
data[7] = val;
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 8, kSizeErrorMsg);
data[0] = val;
data[1] = val >> 8;
data[2] = val >> 16;
data[3] = val >> 24;
data[4] = val >> 32;
data[5] = val >> 40;
data[6] = val >> 48;
data[7] = val >> 56;
}
};
} // namespace webrtc
#endif // MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
|