1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
|
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
#include <string.h>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <optional>
#include <string>
#include <vector>
#include "absl/strings/string_view.h"
#include "api/array_view.h"
#include "api/rtp_headers.h"
#include "api/units/time_delta.h"
#include "api/video/color_space.h"
#include "api/video/hdr_metadata.h"
#include "api/video/video_content_type.h"
#include "api/video/video_rotation.h"
#include "api/video/video_timing.h"
#include "modules/rtp_rtcp/include/rtp_cvo.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "rtc_base/checks.h"
namespace webrtc {
// Absolute send time in RTP streams.
//
// The absolute send time is signaled to the receiver in-band using the
// general mechanism for RTP header extensions [RFC8285]. The payload
// of this extension (the transmitted value) is a 24-bit unsigned integer
// containing the sender's current time in seconds as a fixed point number
// with 18 bits fractional part.
//
// The form of the absolute send time extension block:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=2 | absolute send time |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bool AbsoluteSendTime::Parse(ArrayView<const uint8_t> data,
uint32_t* time_24bits) {
if (data.size() != 3)
return false;
*time_24bits = ByteReader<uint32_t, 3>::ReadBigEndian(data.data());
return true;
}
bool AbsoluteSendTime::Write(ArrayView<uint8_t> data, uint32_t time_24bits) {
RTC_DCHECK_EQ(data.size(), 3);
RTC_DCHECK_LE(time_24bits, 0x00FFFFFF);
ByteWriter<uint32_t, 3>::WriteBigEndian(data.data(), time_24bits);
return true;
}
// Absolute Capture Time
//
// The Absolute Capture Time extension is used to stamp RTP packets with a NTP
// timestamp showing when the first audio or video frame in a packet was
// originally captured. The intent of this extension is to provide a way to
// accomplish audio-to-video synchronization when RTCP-terminating intermediate
// systems (e.g. mixers) are involved.
//
// Data layout of the shortened version of abs-capture-time:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=7 | absolute capture timestamp (bit 0-23) |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | absolute capture timestamp (bit 24-55) |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ... (56-63) |
// +-+-+-+-+-+-+-+-+
//
// Data layout of the extended version of abs-capture-time:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=15| absolute capture timestamp (bit 0-23) |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | absolute capture timestamp (bit 24-55) |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ... (56-63) | estimated capture clock offset (bit 0-23) |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | estimated capture clock offset (bit 24-55) |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ... (56-63) |
// +-+-+-+-+-+-+-+-+
bool AbsoluteCaptureTimeExtension::Parse(ArrayView<const uint8_t> data,
AbsoluteCaptureTime* extension) {
if (data.size() != kValueSizeBytes &&
data.size() != kValueSizeBytesWithoutEstimatedCaptureClockOffset) {
return false;
}
extension->absolute_capture_timestamp =
ByteReader<uint64_t>::ReadBigEndian(data.data());
if (data.size() != kValueSizeBytesWithoutEstimatedCaptureClockOffset) {
extension->estimated_capture_clock_offset =
ByteReader<int64_t>::ReadBigEndian(data.data() + 8);
}
return true;
}
size_t AbsoluteCaptureTimeExtension::ValueSize(
const AbsoluteCaptureTime& extension) {
if (extension.estimated_capture_clock_offset != std::nullopt) {
return kValueSizeBytes;
} else {
return kValueSizeBytesWithoutEstimatedCaptureClockOffset;
}
}
bool AbsoluteCaptureTimeExtension::Write(ArrayView<uint8_t> data,
const AbsoluteCaptureTime& extension) {
RTC_DCHECK_EQ(data.size(), ValueSize(extension));
ByteWriter<uint64_t>::WriteBigEndian(data.data(),
extension.absolute_capture_timestamp);
if (data.size() != kValueSizeBytesWithoutEstimatedCaptureClockOffset) {
ByteWriter<int64_t>::WriteBigEndian(
data.data() + 8, extension.estimated_capture_clock_offset.value());
}
return true;
}
// An RTP Header Extension for Client-to-Mixer Audio Level Indication
//
// https://tools.ietf.org/html/rfc6464
//
// The form of the audio level extension block:
//
// 0 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=0 |V| level |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Sample Audio Level Encoding Using the One-Byte Header Format
//
// 0 1 2
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=1 |V| level |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Sample Audio Level Encoding Using the Two-Byte Header Format
bool AudioLevelExtension::Parse(ArrayView<const uint8_t> data,
AudioLevel* extension) {
// One-byte and two-byte format share the same data definition.
if (data.size() != 1)
return false;
bool voice_activity = (data[0] & 0x80) != 0;
int audio_level = data[0] & 0x7F;
*extension = AudioLevel(voice_activity, audio_level);
return true;
}
bool AudioLevelExtension::Write(ArrayView<uint8_t> data,
const AudioLevel& extension) {
// One-byte and two-byte format share the same data definition.
RTC_DCHECK_EQ(data.size(), 1);
RTC_CHECK_GE(extension.level(), 0);
RTC_CHECK_LE(extension.level(), 0x7f);
data[0] = (extension.voice_activity() ? 0x80 : 0x00) | extension.level();
return true;
}
// An RTP Header Extension for Mixer-to-Client Audio Level Indication
//
// https://tools.ietf.org/html/rfc6465
//
// The form of the audio level extension block:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=2 |0| level 1 |0| level 2 |0| level 3 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Sample Audio Level Encoding Using the One-Byte Header Format
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=3 |0| level 1 |0| level 2 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0| level 3 | 0 (pad) | ... |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Sample Audio Level Encoding Using the Two-Byte Header Format
bool CsrcAudioLevel::Parse(ArrayView<const uint8_t> data,
std::vector<uint8_t>* csrc_audio_levels) {
if (data.size() > kRtpCsrcSize) {
return false;
}
csrc_audio_levels->resize(data.size());
for (size_t i = 0; i < data.size(); i++) {
(*csrc_audio_levels)[i] = data[i] & 0x7F;
}
return true;
}
size_t CsrcAudioLevel::ValueSize(ArrayView<const uint8_t> csrc_audio_levels) {
return csrc_audio_levels.size();
}
bool CsrcAudioLevel::Write(ArrayView<uint8_t> data,
ArrayView<const uint8_t> csrc_audio_levels) {
RTC_CHECK_LE(csrc_audio_levels.size(), kRtpCsrcSize);
if (csrc_audio_levels.size() != data.size()) {
return false;
}
for (size_t i = 0; i < csrc_audio_levels.size(); i++) {
data[i] = csrc_audio_levels[i] & 0x7F;
}
return true;
}
// From RFC 5450: Transmission Time Offsets in RTP Streams.
//
// The transmission time is signaled to the receiver in-band using the
// general mechanism for RTP header extensions [RFC8285]. The payload
// of this extension (the transmitted value) is a 24-bit signed integer.
// When added to the RTP timestamp of the packet, it represents the
// "effective" RTP transmission time of the packet, on the RTP
// timescale.
//
// The form of the transmission offset extension block:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=2 | transmission offset |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bool TransmissionOffset::Parse(ArrayView<const uint8_t> data,
int32_t* rtp_time) {
if (data.size() != 3)
return false;
*rtp_time = ByteReader<int32_t, 3>::ReadBigEndian(data.data());
return true;
}
bool TransmissionOffset::Write(ArrayView<uint8_t> data, int32_t rtp_time) {
RTC_DCHECK_EQ(data.size(), 3);
RTC_DCHECK_LE(rtp_time, 0x00ffffff);
ByteWriter<int32_t, 3>::WriteBigEndian(data.data(), rtp_time);
return true;
}
// TransportSequenceNumber
//
// 0 1 2
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | L=1 |transport-wide sequence number |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bool TransportSequenceNumber::Parse(ArrayView<const uint8_t> data,
uint16_t* transport_sequence_number) {
if (data.size() != kValueSizeBytes)
return false;
*transport_sequence_number = ByteReader<uint16_t>::ReadBigEndian(data.data());
return true;
}
bool TransportSequenceNumber::Write(ArrayView<uint8_t> data,
uint16_t transport_sequence_number) {
RTC_DCHECK_EQ(data.size(), ValueSize(transport_sequence_number));
ByteWriter<uint16_t>::WriteBigEndian(data.data(), transport_sequence_number);
return true;
}
// TransportSequenceNumberV2
//
// In addition to the format used for TransportSequencNumber, V2 also supports
// the following packet format where two extra bytes are used to specify that
// the sender requests immediate feedback.
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | L=3 |transport-wide sequence number |T| seq count |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |seq count cont.|
// +-+-+-+-+-+-+-+-+
//
// The bit `T` determines whether the feedback should include timing information
// or not and `seq_count` determines how many packets the feedback packet should
// cover including the current packet. If `seq_count` is zero no feedback is
// requested.
bool TransportSequenceNumberV2::Parse(
ArrayView<const uint8_t> data,
uint16_t* transport_sequence_number,
std::optional<FeedbackRequest>* feedback_request) {
if (data.size() != kValueSizeBytes &&
data.size() != kValueSizeBytesWithoutFeedbackRequest)
return false;
*transport_sequence_number = ByteReader<uint16_t>::ReadBigEndian(data.data());
*feedback_request = std::nullopt;
if (data.size() == kValueSizeBytes) {
uint16_t feedback_request_raw =
ByteReader<uint16_t>::ReadBigEndian(data.data() + 2);
bool include_timestamps =
(feedback_request_raw & kIncludeTimestampsBit) != 0;
uint16_t sequence_count = feedback_request_raw & ~kIncludeTimestampsBit;
// If `sequence_count` is zero no feedback is requested.
if (sequence_count != 0) {
*feedback_request = {include_timestamps, sequence_count};
}
}
return true;
}
bool TransportSequenceNumberV2::Write(
ArrayView<uint8_t> data,
uint16_t transport_sequence_number,
const std::optional<FeedbackRequest>& feedback_request) {
RTC_DCHECK_EQ(data.size(),
ValueSize(transport_sequence_number, feedback_request));
ByteWriter<uint16_t>::WriteBigEndian(data.data(), transport_sequence_number);
if (feedback_request) {
RTC_DCHECK_GE(feedback_request->sequence_count, 0);
RTC_DCHECK_LT(feedback_request->sequence_count, kIncludeTimestampsBit);
uint16_t feedback_request_raw =
feedback_request->sequence_count |
(feedback_request->include_timestamps ? kIncludeTimestampsBit : 0);
ByteWriter<uint16_t>::WriteBigEndian(data.data() + 2, feedback_request_raw);
}
return true;
}
// Coordination of Video Orientation in RTP streams.
//
// Coordination of Video Orientation consists in signaling of the current
// orientation of the image captured on the sender side to the receiver for
// appropriate rendering and displaying.
//
// 0 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=0 |0 0 0 0 C F R R|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bool VideoOrientation::Parse(ArrayView<const uint8_t> data,
VideoRotation* rotation) {
if (data.size() != 1)
return false;
*rotation = ConvertCVOByteToVideoRotation(data[0]);
return true;
}
bool VideoOrientation::Write(ArrayView<uint8_t> data, VideoRotation rotation) {
RTC_DCHECK_EQ(data.size(), 1);
data[0] = ConvertVideoRotationToCVOByte(rotation);
return true;
}
bool VideoOrientation::Parse(ArrayView<const uint8_t> data, uint8_t* value) {
if (data.size() != 1)
return false;
*value = data[0];
return true;
}
bool VideoOrientation::Write(ArrayView<uint8_t> data, uint8_t value) {
RTC_DCHECK_EQ(data.size(), 1);
data[0] = value;
return true;
}
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=2 | MIN delay | MAX delay |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bool PlayoutDelayLimits::Parse(ArrayView<const uint8_t> data,
VideoPlayoutDelay* playout_delay) {
RTC_DCHECK(playout_delay);
if (data.size() != 3)
return false;
uint32_t raw = ByteReader<uint32_t, 3>::ReadBigEndian(data.data());
uint16_t min_raw = (raw >> 12);
uint16_t max_raw = (raw & 0xfff);
return playout_delay->Set(min_raw * kGranularity, max_raw * kGranularity);
}
bool PlayoutDelayLimits::Write(ArrayView<uint8_t> data,
const VideoPlayoutDelay& playout_delay) {
RTC_DCHECK_EQ(data.size(), 3);
// Convert TimeDelta to value to be sent on extension header.
auto idiv = [](TimeDelta num, TimeDelta den) { return num.us() / den.us(); };
int64_t min_delay = idiv(playout_delay.min(), kGranularity);
int64_t max_delay = idiv(playout_delay.max(), kGranularity);
// Double check min/max boundaries guaranteed by the `VideoPlayouDelay` type.
RTC_DCHECK_GE(min_delay, 0);
RTC_DCHECK_LT(min_delay, 1 << 12);
RTC_DCHECK_GE(max_delay, 0);
RTC_DCHECK_LT(max_delay, 1 << 12);
ByteWriter<uint32_t, 3>::WriteBigEndian(data.data(),
(min_delay << 12) | max_delay);
return true;
}
// Video Content Type.
//
// E.g. default video or screenshare.
//
// 0 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=0 | Content type |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bool VideoContentTypeExtension::Parse(ArrayView<const uint8_t> data,
VideoContentType* content_type) {
if (data.size() == 1 &&
videocontenttypehelpers::IsValidContentType(data[0])) {
// Only the lowest bit of ContentType has a defined meaning.
// Due to previous, now removed, usage of 5 more bits, values with
// those bits set are accepted as valid, but we mask them out before
// converting to a VideoContentType.
*content_type = static_cast<VideoContentType>(data[0] & 0x1);
return true;
}
return false;
}
bool VideoContentTypeExtension::Write(ArrayView<uint8_t> data,
VideoContentType content_type) {
RTC_DCHECK_EQ(data.size(), 1);
data[0] = static_cast<uint8_t>(content_type);
return true;
}
// Video Timing.
// 6 timestamps in milliseconds counted from capture time stored in rtp header:
// encode start/finish, packetization complete, pacer exit and reserved for
// modification by the network modification. `flags` is a bitmask and has the
// following allowed values:
// 0 = Valid data, but no flags available (backwards compatibility)
// 1 = Frame marked as timing frame due to cyclic timer.
// 2 = Frame marked as timing frame due to size being outside limit.
// 255 = Invalid. The whole timing frame extension should be ignored.
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=12| flags | encode start ms delta |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | encode finish ms delta | packetizer finish ms delta |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | pacer exit ms delta | network timestamp ms delta |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | network2 timestamp ms delta |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bool VideoTimingExtension::Parse(ArrayView<const uint8_t> data,
VideoSendTiming* timing) {
RTC_DCHECK(timing);
// TODO(sprang): Deprecate support for old wire format.
ptrdiff_t off = 0;
switch (data.size()) {
case kValueSizeBytes - 1:
timing->flags = 0;
off = 1; // Old wire format without the flags field.
break;
case kValueSizeBytes:
timing->flags = ByteReader<uint8_t>::ReadBigEndian(data.data());
break;
default:
return false;
}
timing->encode_start_delta_ms = ByteReader<uint16_t>::ReadBigEndian(
data.data() + kEncodeStartDeltaOffset - off);
timing->encode_finish_delta_ms = ByteReader<uint16_t>::ReadBigEndian(
data.data() + kEncodeFinishDeltaOffset - off);
timing->packetization_finish_delta_ms = ByteReader<uint16_t>::ReadBigEndian(
data.data() + kPacketizationFinishDeltaOffset - off);
timing->pacer_exit_delta_ms = ByteReader<uint16_t>::ReadBigEndian(
data.data() + kPacerExitDeltaOffset - off);
timing->network_timestamp_delta_ms = ByteReader<uint16_t>::ReadBigEndian(
data.data() + kNetworkTimestampDeltaOffset - off);
timing->network2_timestamp_delta_ms = ByteReader<uint16_t>::ReadBigEndian(
data.data() + kNetwork2TimestampDeltaOffset - off);
return true;
}
bool VideoTimingExtension::Write(ArrayView<uint8_t> data,
const VideoSendTiming& timing) {
RTC_DCHECK_EQ(data.size(), 1 + 2 * 6);
ByteWriter<uint8_t>::WriteBigEndian(data.data() + kFlagsOffset, timing.flags);
ByteWriter<uint16_t>::WriteBigEndian(data.data() + kEncodeStartDeltaOffset,
timing.encode_start_delta_ms);
ByteWriter<uint16_t>::WriteBigEndian(data.data() + kEncodeFinishDeltaOffset,
timing.encode_finish_delta_ms);
ByteWriter<uint16_t>::WriteBigEndian(
data.data() + kPacketizationFinishDeltaOffset,
timing.packetization_finish_delta_ms);
ByteWriter<uint16_t>::WriteBigEndian(data.data() + kPacerExitDeltaOffset,
timing.pacer_exit_delta_ms);
ByteWriter<uint16_t>::WriteBigEndian(
data.data() + kNetworkTimestampDeltaOffset,
timing.network_timestamp_delta_ms);
ByteWriter<uint16_t>::WriteBigEndian(
data.data() + kNetwork2TimestampDeltaOffset,
timing.network2_timestamp_delta_ms);
return true;
}
bool VideoTimingExtension::Write(ArrayView<uint8_t> data,
uint16_t time_delta_ms,
uint8_t offset) {
RTC_DCHECK_GE(data.size(), offset + 2);
RTC_DCHECK_LE(offset, kValueSizeBytes - sizeof(uint16_t));
ByteWriter<uint16_t>::WriteBigEndian(data.data() + offset, time_delta_ms);
return true;
}
// Color space including HDR metadata as an optional field.
//
// RTP header extension to carry color space information and optionally HDR
// metadata. The float values in the HDR metadata struct are upscaled by a
// static factor and transmitted as unsigned integers.
//
// Data layout of color space with HDR metadata (two-byte RTP header extension)
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | length=28 | primaries | transfer |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | matrix |range+chr.sit. | luminance_max |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | luminance_min | mastering_metadata.|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |primary_r.x and .y | mastering_metadata.|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |primary_g.x and .y | mastering_metadata.|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |primary_b.x and .y | mastering_metadata.|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |white.x and .y | max_content_light_level |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | max_frame_average_light_level |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Data layout of color space w/o HDR metadata (one-byte RTP header extension)
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | L = 3 | primaries | transfer | matrix |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |range+chr.sit. |
// +-+-+-+-+-+-+-+-+
bool ColorSpaceExtension::Parse(ArrayView<const uint8_t> data,
ColorSpace* color_space) {
RTC_DCHECK(color_space);
if (data.size() != kValueSizeBytes &&
data.size() != kValueSizeBytesWithoutHdrMetadata)
return false;
size_t offset = 0;
// Read color space information.
if (!color_space->set_primaries_from_uint8(data[offset++]))
return false;
if (!color_space->set_transfer_from_uint8(data[offset++]))
return false;
if (!color_space->set_matrix_from_uint8(data[offset++]))
return false;
uint8_t range_and_chroma_siting = data[offset++];
if (!color_space->set_range_from_uint8((range_and_chroma_siting >> 4) & 0x03))
return false;
if (!color_space->set_chroma_siting_horizontal_from_uint8(
(range_and_chroma_siting >> 2) & 0x03))
return false;
if (!color_space->set_chroma_siting_vertical_from_uint8(
range_and_chroma_siting & 0x03))
return false;
// Read HDR metadata if it exists, otherwise clear it.
if (data.size() == kValueSizeBytesWithoutHdrMetadata) {
color_space->set_hdr_metadata(nullptr);
} else {
HdrMetadata hdr_metadata;
offset += ParseHdrMetadata(data.subview(offset), &hdr_metadata);
if (!hdr_metadata.Validate())
return false;
color_space->set_hdr_metadata(&hdr_metadata);
}
RTC_DCHECK_EQ(ValueSize(*color_space), offset);
return true;
}
bool ColorSpaceExtension::Write(ArrayView<uint8_t> data,
const ColorSpace& color_space) {
RTC_DCHECK_EQ(data.size(), ValueSize(color_space));
size_t offset = 0;
// Write color space information.
data[offset++] = static_cast<uint8_t>(color_space.primaries());
data[offset++] = static_cast<uint8_t>(color_space.transfer());
data[offset++] = static_cast<uint8_t>(color_space.matrix());
data[offset++] = CombineRangeAndChromaSiting(
color_space.range(), color_space.chroma_siting_horizontal(),
color_space.chroma_siting_vertical());
// Write HDR metadata if it exists.
if (color_space.hdr_metadata()) {
offset +=
WriteHdrMetadata(data.subview(offset), *color_space.hdr_metadata());
}
RTC_DCHECK_EQ(ValueSize(color_space), offset);
return true;
}
// Combines range and chroma siting into one byte with the following bit layout:
// bits 0-1 Chroma siting vertical.
// 2-3 Chroma siting horizontal.
// 4-5 Range.
// 6-7 Unused.
uint8_t ColorSpaceExtension::CombineRangeAndChromaSiting(
ColorSpace::RangeID range,
ColorSpace::ChromaSiting chroma_siting_horizontal,
ColorSpace::ChromaSiting chroma_siting_vertical) {
RTC_DCHECK_LE(static_cast<uint8_t>(range), 3);
RTC_DCHECK_LE(static_cast<uint8_t>(chroma_siting_horizontal), 3);
RTC_DCHECK_LE(static_cast<uint8_t>(chroma_siting_vertical), 3);
return (static_cast<uint8_t>(range) << 4) |
(static_cast<uint8_t>(chroma_siting_horizontal) << 2) |
static_cast<uint8_t>(chroma_siting_vertical);
}
size_t ColorSpaceExtension::ParseHdrMetadata(ArrayView<const uint8_t> data,
HdrMetadata* hdr_metadata) {
RTC_DCHECK_EQ(data.size(),
kValueSizeBytes - kValueSizeBytesWithoutHdrMetadata);
size_t offset = 0;
offset += ParseLuminance(data.data() + offset,
&hdr_metadata->mastering_metadata.luminance_max,
kLuminanceMaxDenominator);
offset += ParseLuminance(data.data() + offset,
&hdr_metadata->mastering_metadata.luminance_min,
kLuminanceMinDenominator);
offset += ParseChromaticity(data.data() + offset,
&hdr_metadata->mastering_metadata.primary_r);
offset += ParseChromaticity(data.data() + offset,
&hdr_metadata->mastering_metadata.primary_g);
offset += ParseChromaticity(data.data() + offset,
&hdr_metadata->mastering_metadata.primary_b);
offset += ParseChromaticity(data.data() + offset,
&hdr_metadata->mastering_metadata.white_point);
hdr_metadata->max_content_light_level =
ByteReader<uint16_t>::ReadBigEndian(data.data() + offset);
offset += 2;
hdr_metadata->max_frame_average_light_level =
ByteReader<uint16_t>::ReadBigEndian(data.data() + offset);
offset += 2;
return offset;
}
size_t ColorSpaceExtension::ParseChromaticity(
const uint8_t* data,
HdrMasteringMetadata::Chromaticity* p) {
uint16_t chromaticity_x_scaled = ByteReader<uint16_t>::ReadBigEndian(data);
uint16_t chromaticity_y_scaled =
ByteReader<uint16_t>::ReadBigEndian(data + 2);
p->x = static_cast<float>(chromaticity_x_scaled) / kChromaticityDenominator;
p->y = static_cast<float>(chromaticity_y_scaled) / kChromaticityDenominator;
return 4; // Return number of bytes read.
}
size_t ColorSpaceExtension::ParseLuminance(const uint8_t* data,
float* f,
int denominator) {
uint16_t luminance_scaled = ByteReader<uint16_t>::ReadBigEndian(data);
*f = static_cast<float>(luminance_scaled) / denominator;
return 2; // Return number of bytes read.
}
size_t ColorSpaceExtension::WriteHdrMetadata(ArrayView<uint8_t> data,
const HdrMetadata& hdr_metadata) {
RTC_DCHECK_EQ(data.size(),
kValueSizeBytes - kValueSizeBytesWithoutHdrMetadata);
RTC_DCHECK(hdr_metadata.Validate());
size_t offset = 0;
offset += WriteLuminance(data.data() + offset,
hdr_metadata.mastering_metadata.luminance_max,
kLuminanceMaxDenominator);
offset += WriteLuminance(data.data() + offset,
hdr_metadata.mastering_metadata.luminance_min,
kLuminanceMinDenominator);
offset += WriteChromaticity(data.data() + offset,
hdr_metadata.mastering_metadata.primary_r);
offset += WriteChromaticity(data.data() + offset,
hdr_metadata.mastering_metadata.primary_g);
offset += WriteChromaticity(data.data() + offset,
hdr_metadata.mastering_metadata.primary_b);
offset += WriteChromaticity(data.data() + offset,
hdr_metadata.mastering_metadata.white_point);
ByteWriter<uint16_t>::WriteBigEndian(data.data() + offset,
hdr_metadata.max_content_light_level);
offset += 2;
ByteWriter<uint16_t>::WriteBigEndian(
data.data() + offset, hdr_metadata.max_frame_average_light_level);
offset += 2;
return offset;
}
size_t ColorSpaceExtension::WriteChromaticity(
uint8_t* data,
const HdrMasteringMetadata::Chromaticity& p) {
RTC_DCHECK_GE(p.x, 0.0f);
RTC_DCHECK_LE(p.x, 1.0f);
RTC_DCHECK_GE(p.y, 0.0f);
RTC_DCHECK_LE(p.y, 1.0f);
ByteWriter<uint16_t>::WriteBigEndian(
data, std::round(p.x * kChromaticityDenominator));
ByteWriter<uint16_t>::WriteBigEndian(
data + 2, std::round(p.y * kChromaticityDenominator));
return 4; // Return number of bytes written.
}
size_t ColorSpaceExtension::WriteLuminance(uint8_t* data,
float f,
int denominator) {
RTC_DCHECK_GE(f, 0.0f);
float upscaled_value = f * denominator;
RTC_DCHECK_LE(upscaled_value, std::numeric_limits<uint16_t>::max());
ByteWriter<uint16_t>::WriteBigEndian(data, std::round(upscaled_value));
return 2; // Return number of bytes written.
}
bool BaseRtpStringExtension::Parse(ArrayView<const uint8_t> data,
std::string* str) {
if (data.empty() || data[0] == 0) // Valid string extension can't be empty.
return false;
const char* cstr = reinterpret_cast<const char*>(data.data());
// If there is a \0 character in the middle of the `data`, treat it as end
// of the string. Well-formed string extensions shouldn't contain it.
str->assign(cstr, strnlen(cstr, data.size()));
RTC_DCHECK(!str->empty());
return true;
}
bool BaseRtpStringExtension::Write(ArrayView<uint8_t> data,
absl::string_view str) {
if (str.size() > kMaxValueSizeBytes) {
return false;
}
RTC_DCHECK_EQ(data.size(), str.size());
RTC_DCHECK_GE(str.size(), 1);
memcpy(data.data(), str.data(), str.size());
return true;
}
// An RTP Header Extension for Inband Comfort Noise
//
// The form of the audio level extension block:
//
// 0 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=0 |N| level |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Sample Audio Level Encoding Using the One-Byte Header Format
//
// 0 1 2
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=1 |N| level |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Sample Audio Level Encoding Using the Two-Byte Header Format
bool InbandComfortNoiseExtension::Parse(ArrayView<const uint8_t> data,
std::optional<uint8_t>* level) {
if (data.size() != kValueSizeBytes)
return false;
*level = (data[0] & 0b1000'0000) != 0
? std::nullopt
: std::make_optional(data[0] & 0b0111'1111);
return true;
}
bool InbandComfortNoiseExtension::Write(ArrayView<uint8_t> data,
std::optional<uint8_t> level) {
RTC_DCHECK_EQ(data.size(), kValueSizeBytes);
data[0] = 0b0000'0000;
if (level) {
if (*level > 127) {
return false;
}
data[0] = 0b1000'0000 | *level;
}
return true;
}
// VideoFrameTrackingIdExtension
//
// 0 1 2
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | L=1 | video-frame-tracking-id |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bool VideoFrameTrackingIdExtension::Parse(ArrayView<const uint8_t> data,
uint16_t* video_frame_tracking_id) {
if (data.size() != kValueSizeBytes) {
return false;
}
*video_frame_tracking_id = ByteReader<uint16_t>::ReadBigEndian(data.data());
return true;
}
bool VideoFrameTrackingIdExtension::Write(ArrayView<uint8_t> data,
uint16_t video_frame_tracking_id) {
RTC_DCHECK_EQ(data.size(), kValueSizeBytes);
ByteWriter<uint16_t>::WriteBigEndian(data.data(), video_frame_tracking_id);
return true;
}
} // namespace webrtc
|