1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Test application for core FEC algorithm. Calls encoding and decoding
* functions in ForwardErrorCorrection directly.
*/
#include <string.h>
#include <time.h>
#include <cstdint>
#include <cstdio>
#include <list>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "modules/include/module_fec_types.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/rtp_rtcp/source/forward_error_correction.h"
#include "modules/rtp_rtcp/source/forward_error_correction_internal.h"
#include "rtc_base/checks.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
// #define VERBOSE_OUTPUT
namespace webrtc {
namespace fec_private_tables {
extern const uint8_t** kPacketMaskBurstyTbl[12];
}
namespace test {
using fec_private_tables::kPacketMaskBurstyTbl;
void ReceivePackets(
std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>*
to_decode_list,
std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>*
received_packet_list,
size_t num_packets_to_decode,
float reorder_rate,
float duplicate_rate,
Random* random) {
RTC_DCHECK(to_decode_list->empty());
RTC_DCHECK_LE(num_packets_to_decode, received_packet_list->size());
for (size_t i = 0; i < num_packets_to_decode; i++) {
auto it = received_packet_list->begin();
// Reorder packets.
float random_variable = random->Rand<float>();
while (random_variable < reorder_rate) {
++it;
if (it == received_packet_list->end()) {
--it;
break;
}
random_variable = random->Rand<float>();
}
to_decode_list->push_back(std::move(*it));
received_packet_list->erase(it);
// Duplicate packets.
ForwardErrorCorrection::ReceivedPacket* received_packet =
to_decode_list->back().get();
random_variable = random->Rand<float>();
while (random_variable < duplicate_rate) {
std::unique_ptr<ForwardErrorCorrection::ReceivedPacket> duplicate_packet(
new ForwardErrorCorrection::ReceivedPacket());
*duplicate_packet = *received_packet;
duplicate_packet->pkt = new ForwardErrorCorrection::Packet();
duplicate_packet->pkt->data = received_packet->pkt->data;
to_decode_list->push_back(std::move(duplicate_packet));
random_variable = random->Rand<float>();
}
}
}
void RunTest(bool use_flexfec) {
// TODO(marpan): Split this function into subroutines/helper functions.
enum { kMaxNumberMediaPackets = 48 };
enum { kMaxNumberFecPackets = 48 };
const uint32_t kNumMaskBytesL0 = 2;
const uint32_t kNumMaskBytesL1 = 6;
// FOR UEP
const bool kUseUnequalProtection = true;
// FEC mask types.
const FecMaskType kMaskTypes[] = {kFecMaskRandom, kFecMaskBursty};
const int kNumFecMaskTypes = sizeof(kMaskTypes) / sizeof(*kMaskTypes);
// Maximum number of media packets allowed for the mask type.
const uint16_t kMaxMediaPackets[] = {
kMaxNumberMediaPackets,
sizeof(kPacketMaskBurstyTbl) / sizeof(*kPacketMaskBurstyTbl)};
ASSERT_EQ(12, kMaxMediaPackets[1]) << "Max media packets for bursty mode not "
"equal to 12.";
ForwardErrorCorrection::PacketList media_packet_list;
std::list<ForwardErrorCorrection::Packet*> fec_packet_list;
std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>
to_decode_list;
std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>
received_packet_list;
ForwardErrorCorrection::RecoveredPacketList recovered_packet_list;
std::list<uint8_t*> fec_mask_list;
// Running over only two loss rates to limit execution time.
const float loss_rate[] = {0.05f, 0.01f};
const uint32_t loss_rate_size = sizeof(loss_rate) / sizeof(*loss_rate);
const float reorder_rate = 0.1f;
const float duplicate_rate = 0.1f;
uint8_t media_loss_mask[kMaxNumberMediaPackets];
uint8_t fec_loss_mask[kMaxNumberFecPackets];
uint8_t fec_packet_masks[kMaxNumberFecPackets][kMaxNumberMediaPackets];
// Seed the random number generator, storing the seed to file in order to
// reproduce past results.
const unsigned int random_seed = static_cast<unsigned int>(time(nullptr));
Random random(random_seed);
std::string filename = test::OutputPath() + "randomSeedLog.txt";
FILE* random_seed_file = fopen(filename.c_str(), "a");
fprintf(random_seed_file, "%u\n", random_seed);
fclose(random_seed_file);
random_seed_file = nullptr;
uint16_t seq_num = 0;
uint32_t timestamp = random.Rand<uint32_t>();
const uint32_t media_ssrc = random.Rand(1u, 0xfffffffe);
uint32_t fec_ssrc;
uint16_t fec_seq_num_offset;
if (use_flexfec) {
fec_ssrc = random.Rand(1u, 0xfffffffe);
fec_seq_num_offset = random.Rand(0, 1 << 15);
} else {
fec_ssrc = media_ssrc;
fec_seq_num_offset = 0;
}
std::unique_ptr<ForwardErrorCorrection> fec;
if (use_flexfec) {
fec = ForwardErrorCorrection::CreateFlexfec(fec_ssrc, media_ssrc);
} else {
RTC_DCHECK_EQ(media_ssrc, fec_ssrc);
fec = ForwardErrorCorrection::CreateUlpfec(fec_ssrc);
}
// Loop over the mask types: random and bursty.
for (int mask_type_idx = 0; mask_type_idx < kNumFecMaskTypes;
++mask_type_idx) {
for (uint32_t loss_rate_idx = 0; loss_rate_idx < loss_rate_size;
++loss_rate_idx) {
printf("Loss rate: %.2f, Mask type %d \n", loss_rate[loss_rate_idx],
mask_type_idx);
const uint32_t packet_mask_max = kMaxMediaPackets[mask_type_idx];
std::unique_ptr<uint8_t[]> packet_mask(
new uint8_t[packet_mask_max * kNumMaskBytesL1]);
FecMaskType fec_mask_type = kMaskTypes[mask_type_idx];
for (uint32_t num_media_packets = 1; num_media_packets <= packet_mask_max;
num_media_packets++) {
internal::PacketMaskTable mask_table(fec_mask_type, num_media_packets);
for (uint32_t num_fec_packets = 1;
num_fec_packets <= num_media_packets &&
num_fec_packets <= packet_mask_max;
num_fec_packets++) {
// Loop over num_imp_packets: usually <= (0.3*num_media_packets).
// For this test we check up to ~ (num_media_packets / 4).
uint32_t max_num_imp_packets = num_media_packets / 4 + 1;
for (uint32_t num_imp_packets = 0;
num_imp_packets <= max_num_imp_packets &&
num_imp_packets <= packet_mask_max;
num_imp_packets++) {
uint8_t protection_factor =
static_cast<uint8_t>(num_fec_packets * 255 / num_media_packets);
const uint32_t mask_bytes_per_fec_packet =
(num_media_packets > 16) ? kNumMaskBytesL1 : kNumMaskBytesL0;
memset(packet_mask.get(), 0,
num_media_packets * mask_bytes_per_fec_packet);
// Transfer packet masks from bit-mask to byte-mask.
internal::GeneratePacketMasks(
num_media_packets, num_fec_packets, num_imp_packets,
kUseUnequalProtection, &mask_table, packet_mask.get());
#ifdef VERBOSE_OUTPUT
printf(
"%u media packets, %u FEC packets, %u num_imp_packets, "
"loss rate = %.2f \n",
num_media_packets, num_fec_packets, num_imp_packets,
loss_rate[loss_rate_idx]);
printf("Packet mask matrix \n");
#endif
for (uint32_t i = 0; i < num_fec_packets; i++) {
for (uint32_t j = 0; j < num_media_packets; j++) {
const uint8_t byte_mask =
packet_mask[i * mask_bytes_per_fec_packet + j / 8];
const uint32_t bit_position = (7 - j % 8);
fec_packet_masks[i][j] =
(byte_mask & (1 << bit_position)) >> bit_position;
#ifdef VERBOSE_OUTPUT
printf("%u ", fec_packet_masks[i][j]);
#endif
}
#ifdef VERBOSE_OUTPUT
printf("\n");
#endif
}
#ifdef VERBOSE_OUTPUT
printf("\n");
#endif
// Check for all zero rows or columns: indicates incorrect mask.
uint32_t row_limit = num_media_packets;
for (uint32_t i = 0; i < num_fec_packets; ++i) {
uint32_t row_sum = 0;
for (uint32_t j = 0; j < row_limit; ++j) {
row_sum += fec_packet_masks[i][j];
}
ASSERT_NE(0u, row_sum) << "Row is all zero " << i;
}
for (uint32_t j = 0; j < row_limit; ++j) {
uint32_t column_sum = 0;
for (uint32_t i = 0; i < num_fec_packets; ++i) {
column_sum += fec_packet_masks[i][j];
}
ASSERT_NE(0u, column_sum) << "Column is all zero " << j;
}
// Construct media packets.
// Reset the sequence number here for each FEC code/mask tested
// below, to avoid sequence number wrap-around. In actual decoding,
// old FEC packets in list are dropped if sequence number wrap
// around is detected. This case is currently not handled below.
seq_num = 0;
for (uint32_t i = 0; i < num_media_packets; ++i) {
std::unique_ptr<ForwardErrorCorrection::Packet> media_packet(
new ForwardErrorCorrection::Packet());
const uint32_t kMinPacketSize = 12;
const uint32_t kMaxPacketSize = static_cast<uint32_t>(
IP_PACKET_SIZE - 12 - 28 - fec->MaxPacketOverhead());
size_t packet_length =
random.Rand(kMinPacketSize, kMaxPacketSize);
media_packet->data.SetSize(packet_length);
uint8_t* data = media_packet->data.MutableData();
// Generate random values for the first 2 bytes.
data[0] = random.Rand<uint8_t>();
data[1] = random.Rand<uint8_t>();
// The first two bits are assumed to be 10 by the
// FEC encoder. In fact the FEC decoder will set the
// two first bits to 10 regardless of what they
// actually were. Set the first two bits to 10
// so that a memcmp can be performed for the
// whole restored packet.
data[0] |= 0x80;
data[0] &= 0xbf;
// FEC is applied to a whole frame.
// A frame is signaled by multiple packets without
// the marker bit set followed by the last packet of
// the frame for which the marker bit is set.
// Only push one (fake) frame to the FEC.
data[1] &= 0x7f;
ByteWriter<uint16_t>::WriteBigEndian(&data[2], seq_num);
ByteWriter<uint32_t>::WriteBigEndian(&data[4], timestamp);
ByteWriter<uint32_t>::WriteBigEndian(&data[8], media_ssrc);
// Generate random values for payload
for (size_t j = 12; j < packet_length; ++j) {
data[j] = random.Rand<uint8_t>();
}
media_packet_list.push_back(std::move(media_packet));
seq_num++;
}
media_packet_list.back()->data.MutableData()[1] |= 0x80;
ASSERT_EQ(0, fec->EncodeFec(media_packet_list, protection_factor,
num_imp_packets, kUseUnequalProtection,
fec_mask_type, &fec_packet_list))
<< "EncodeFec() failed";
ASSERT_EQ(num_fec_packets, fec_packet_list.size())
<< "We requested " << num_fec_packets
<< " FEC packets, but "
"EncodeFec() produced "
<< fec_packet_list.size();
memset(media_loss_mask, 0, sizeof(media_loss_mask));
uint32_t media_packet_idx = 0;
for (const auto& media_packet : media_packet_list) {
// We want a value between 0 and 1.
const float loss_random_variable = random.Rand<float>();
if (loss_random_variable >= loss_rate[loss_rate_idx]) {
media_loss_mask[media_packet_idx] = 1;
std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>
received_packet(
new ForwardErrorCorrection::ReceivedPacket());
received_packet->pkt = new ForwardErrorCorrection::Packet();
received_packet->pkt->data = media_packet->data;
received_packet->ssrc = media_ssrc;
received_packet->seq_num = ByteReader<uint16_t>::ReadBigEndian(
media_packet->data.data() + 2);
received_packet->is_fec = false;
received_packet_list.push_back(std::move(received_packet));
}
media_packet_idx++;
}
memset(fec_loss_mask, 0, sizeof(fec_loss_mask));
uint32_t fec_packet_idx = 0;
for (auto* fec_packet : fec_packet_list) {
const float loss_random_variable = random.Rand<float>();
if (loss_random_variable >= loss_rate[loss_rate_idx]) {
fec_loss_mask[fec_packet_idx] = 1;
std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>
received_packet(
new ForwardErrorCorrection::ReceivedPacket());
received_packet->pkt = new ForwardErrorCorrection::Packet();
received_packet->pkt->data = fec_packet->data;
received_packet->seq_num = fec_seq_num_offset + seq_num;
received_packet->is_fec = true;
received_packet->ssrc = fec_ssrc;
received_packet_list.push_back(std::move(received_packet));
fec_mask_list.push_back(fec_packet_masks[fec_packet_idx]);
}
++fec_packet_idx;
++seq_num;
}
#ifdef VERBOSE_OUTPUT
printf("Media loss mask:\n");
for (uint32_t i = 0; i < num_media_packets; i++) {
printf("%u ", media_loss_mask[i]);
}
printf("\n\n");
printf("FEC loss mask:\n");
for (uint32_t i = 0; i < num_fec_packets; i++) {
printf("%u ", fec_loss_mask[i]);
}
printf("\n\n");
#endif
auto fec_mask_it = fec_mask_list.begin();
while (fec_mask_it != fec_mask_list.end()) {
uint32_t hamming_dist = 0;
uint32_t recovery_position = 0;
for (uint32_t i = 0; i < num_media_packets; i++) {
if (media_loss_mask[i] == 0 && (*fec_mask_it)[i] == 1) {
recovery_position = i;
++hamming_dist;
}
}
auto item_to_delete = fec_mask_it;
++fec_mask_it;
if (hamming_dist == 1) {
// Recovery possible. Restart search.
media_loss_mask[recovery_position] = 1;
fec_mask_it = fec_mask_list.begin();
} else if (hamming_dist == 0) {
// FEC packet cannot provide further recovery.
fec_mask_list.erase(item_to_delete);
}
}
#ifdef VERBOSE_OUTPUT
printf("Recovery mask:\n");
for (uint32_t i = 0; i < num_media_packets; ++i) {
printf("%u ", media_loss_mask[i]);
}
printf("\n\n");
#endif
// For error-checking frame completion.
bool fec_packet_received = false;
while (!received_packet_list.empty()) {
size_t num_packets_to_decode = random.Rand(
1u, static_cast<uint32_t>(received_packet_list.size()));
ReceivePackets(&to_decode_list, &received_packet_list,
num_packets_to_decode, reorder_rate,
duplicate_rate, &random);
if (fec_packet_received == false) {
for (const auto& received_packet : to_decode_list) {
if (received_packet->is_fec) {
fec_packet_received = true;
}
}
}
for (const auto& received_packet : to_decode_list) {
fec->DecodeFec(*received_packet, &recovered_packet_list);
}
to_decode_list.clear();
}
media_packet_idx = 0;
for (const auto& media_packet : media_packet_list) {
if (media_loss_mask[media_packet_idx] == 1) {
// Should have recovered this packet.
auto recovered_packet_list_it = recovered_packet_list.cbegin();
ASSERT_FALSE(recovered_packet_list_it ==
recovered_packet_list.end())
<< "Insufficient number of recovered packets.";
ForwardErrorCorrection::RecoveredPacket* recovered_packet =
recovered_packet_list_it->get();
ASSERT_EQ(recovered_packet->pkt->data.size(),
media_packet->data.size())
<< "Recovered packet length not identical to original "
"media packet";
ASSERT_EQ(0, memcmp(recovered_packet->pkt->data.cdata(),
media_packet->data.cdata(),
media_packet->data.size()))
<< "Recovered packet payload not identical to original "
"media packet";
recovered_packet_list.pop_front();
}
++media_packet_idx;
}
fec->ResetState(&recovered_packet_list);
ASSERT_TRUE(recovered_packet_list.empty())
<< "Excessive number of recovered packets.\t size is: "
<< recovered_packet_list.size();
// -- Teardown --
media_packet_list.clear();
// Clear FEC packet list, so we don't pass in a non-empty
// list in the next call to DecodeFec().
fec_packet_list.clear();
// Delete received packets we didn't pass to DecodeFec(), due to
// early frame completion.
received_packet_list.clear();
while (!fec_mask_list.empty()) {
fec_mask_list.pop_front();
}
timestamp += 90000 / 30;
} // loop over num_imp_packets
} // loop over FecPackets
} // loop over num_media_packets
} // loop over loss rates
} // loop over mask types
// Have DecodeFec clear the recovered packet list.
fec->ResetState(&recovered_packet_list);
ASSERT_TRUE(recovered_packet_list.empty())
<< "Recovered packet list is not empty";
}
TEST(FecTest, UlpfecTest) {
RunTest(false);
}
TEST(FecTest, FlexfecTest) {
RunTest(true);
}
} // namespace test
} // namespace webrtc
|