1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
|
/* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/vp8/screenshare_layers.h"
#include <stdlib.h>
#include <algorithm>
#include <cstdint>
#include <memory>
#include <optional>
#include <vector>
#include "api/transport/rtp/dependency_descriptor.h"
#include "api/video_codecs/video_encoder.h"
#include "api/video_codecs/vp8_frame_buffer_controller.h"
#include "api/video_codecs/vp8_frame_config.h"
#include "api/video_codecs/vp8_temporal_layers.h"
#include "common_video/generic_frame_descriptor/generic_frame_info.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/codecs/vp8/include/temporal_layers_checker.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
using BufferFlags = Vp8FrameConfig::BufferFlags;
constexpr BufferFlags kNone = Vp8FrameConfig::BufferFlags::kNone;
constexpr BufferFlags kReference = Vp8FrameConfig::BufferFlags::kReference;
constexpr BufferFlags kUpdate = Vp8FrameConfig::BufferFlags::kUpdate;
constexpr BufferFlags kReferenceAndUpdate =
Vp8FrameConfig::BufferFlags::kReferenceAndUpdate;
constexpr int kOneSecond90Khz = 90000;
constexpr int kMinTimeBetweenSyncs = kOneSecond90Khz * 2;
constexpr int kMaxTimeBetweenSyncs = kOneSecond90Khz * 4;
constexpr int kQpDeltaThresholdForSync = 8;
constexpr int kMinBitrateKbpsForQpBoost = 500;
constexpr auto kSwitch = DecodeTargetIndication::kSwitch;
} // namespace
const double ScreenshareLayers::kMaxTL0FpsReduction = 2.5;
const double ScreenshareLayers::kAcceptableTargetOvershoot = 2.0;
constexpr int ScreenshareLayers::kMaxNumTemporalLayers;
// Always emit a frame with certain interval, even if bitrate targets have
// been exceeded. This prevents needless keyframe requests.
const int ScreenshareLayers::kMaxFrameIntervalMs = 2750;
ScreenshareLayers::ScreenshareLayers(int num_temporal_layers)
: number_of_temporal_layers_(
std::min(kMaxNumTemporalLayers, num_temporal_layers)),
active_layer_(-1),
last_timestamp_(-1),
last_sync_timestamp_(-1),
last_emitted_tl0_timestamp_(-1),
last_frame_time_ms_(-1),
max_debt_bytes_(0),
encode_framerate_(1000.0f, 1000.0f), // 1 second window, second scale.
bitrate_updated_(false),
checker_(TemporalLayersChecker::CreateTemporalLayersChecker(
Vp8TemporalLayersType::kBitrateDynamic,
num_temporal_layers)) {
RTC_CHECK_GT(number_of_temporal_layers_, 0);
RTC_CHECK_LE(number_of_temporal_layers_, kMaxNumTemporalLayers);
}
ScreenshareLayers::~ScreenshareLayers() {
UpdateHistograms();
}
void ScreenshareLayers::SetQpLimits(size_t stream_index,
int min_qp,
int max_qp) {
RTC_DCHECK_LT(stream_index, StreamCount());
// 0 < min_qp <= max_qp
RTC_DCHECK_LT(0, min_qp);
RTC_DCHECK_LE(min_qp, max_qp);
RTC_DCHECK_EQ(min_qp_.has_value(), max_qp_.has_value());
if (!min_qp_.has_value()) {
min_qp_ = min_qp;
max_qp_ = max_qp;
} else {
RTC_DCHECK_EQ(min_qp, min_qp_.value());
RTC_DCHECK_EQ(max_qp, max_qp_.value());
}
}
size_t ScreenshareLayers::StreamCount() const {
return 1;
}
bool ScreenshareLayers::SupportsEncoderFrameDropping(
size_t stream_index) const {
RTC_DCHECK_LT(stream_index, StreamCount());
// Frame dropping is handled internally by this class.
return false;
}
Vp8FrameConfig ScreenshareLayers::NextFrameConfig(size_t stream_index,
uint32_t timestamp) {
RTC_DCHECK_LT(stream_index, StreamCount());
auto it = pending_frame_configs_.find(timestamp);
if (it != pending_frame_configs_.end()) {
// Drop and re-encode, reuse the previous config.
return it->second.frame_config;
}
if (number_of_temporal_layers_ <= 1) {
// No flags needed for 1 layer screenshare.
// TODO(pbos): Consider updating only last, and not all buffers.
DependencyInfo dependency_info{
"S", {kReferenceAndUpdate, kReferenceAndUpdate, kReferenceAndUpdate}};
pending_frame_configs_[timestamp] = dependency_info;
return dependency_info.frame_config;
}
const int64_t now_ms = TimeMillis();
int64_t unwrapped_timestamp = time_wrap_handler_.Unwrap(timestamp);
int64_t ts_diff;
if (last_timestamp_ == -1) {
ts_diff = kOneSecond90Khz / capture_framerate_.value_or(*target_framerate_);
} else {
ts_diff = unwrapped_timestamp - last_timestamp_;
}
if (target_framerate_) {
// If input frame rate exceeds target frame rate, either over a one second
// averaging window, or if frame interval is below 90% of desired value,
// drop frame.
if (encode_framerate_.Rate(now_ms).value_or(0) > *target_framerate_)
return Vp8FrameConfig(kNone, kNone, kNone);
// Primarily check if frame interval is too short using frame timestamps,
// as if they are correct they won't be affected by queuing in webrtc.
const int64_t expected_frame_interval_90khz =
kOneSecond90Khz / *target_framerate_;
if (last_timestamp_ != -1 && ts_diff > 0) {
if (ts_diff < 85 * expected_frame_interval_90khz / 100) {
return Vp8FrameConfig(kNone, kNone, kNone);
}
} else {
// Timestamps looks off, use realtime clock here instead.
const int64_t expected_frame_interval_ms = 1000 / *target_framerate_;
if (last_frame_time_ms_ != -1 &&
now_ms - last_frame_time_ms_ <
(85 * expected_frame_interval_ms) / 100) {
return Vp8FrameConfig(kNone, kNone, kNone);
}
}
}
if (stats_.first_frame_time_ms_ == -1)
stats_.first_frame_time_ms_ = now_ms;
// Make sure both frame droppers leak out bits.
layers_[0].UpdateDebt(ts_diff / 90);
layers_[1].UpdateDebt(ts_diff / 90);
last_timestamp_ = timestamp;
last_frame_time_ms_ = now_ms;
TemporalLayerState layer_state = TemporalLayerState::kDrop;
if (active_layer_ == -1 ||
layers_[active_layer_].state != TemporalLayer::State::kDropped) {
if (last_emitted_tl0_timestamp_ != -1 &&
(unwrapped_timestamp - last_emitted_tl0_timestamp_) / 90 >
kMaxFrameIntervalMs) {
// Too long time has passed since the last frame was emitted, cancel
// enough debt to allow a single frame.
layers_[0].debt_bytes_ = max_debt_bytes_ - 1;
}
if (layers_[0].debt_bytes_ > max_debt_bytes_) {
// Must drop TL0, encode TL1 instead.
if (layers_[1].debt_bytes_ > max_debt_bytes_) {
// Must drop both TL0 and TL1.
active_layer_ = -1;
} else {
active_layer_ = 1;
}
} else {
active_layer_ = 0;
}
}
switch (active_layer_) {
case 0:
layer_state = TemporalLayerState::kTl0;
last_emitted_tl0_timestamp_ = unwrapped_timestamp;
break;
case 1:
if (layers_[1].state != TemporalLayer::State::kDropped) {
if (TimeToSync(unwrapped_timestamp) ||
layers_[1].state == TemporalLayer::State::kKeyFrame) {
last_sync_timestamp_ = unwrapped_timestamp;
layer_state = TemporalLayerState::kTl1Sync;
} else {
layer_state = TemporalLayerState::kTl1;
}
} else {
layer_state = last_sync_timestamp_ == unwrapped_timestamp
? TemporalLayerState::kTl1Sync
: TemporalLayerState::kTl1;
}
break;
case -1:
layer_state = TemporalLayerState::kDrop;
++stats_.num_dropped_frames_;
break;
default:
RTC_DCHECK_NOTREACHED();
}
DependencyInfo dependency_info;
// TODO(pbos): Consider referencing but not updating the 'alt' buffer for all
// layers.
switch (layer_state) {
case TemporalLayerState::kDrop:
dependency_info = {"", {kNone, kNone, kNone}};
break;
case TemporalLayerState::kTl0:
// TL0 only references and updates 'last'.
dependency_info = {"SS", {kReferenceAndUpdate, kNone, kNone}};
dependency_info.frame_config.packetizer_temporal_idx = 0;
break;
case TemporalLayerState::kTl1:
// TL1 references both 'last' and 'golden' but only updates 'golden'.
dependency_info = {"-R", {kReference, kReferenceAndUpdate, kNone}};
dependency_info.frame_config.packetizer_temporal_idx = 1;
break;
case TemporalLayerState::kTl1Sync:
// Predict from only TL0 to allow participants to switch to the high
// bitrate stream. Updates 'golden' so that TL1 can continue to refer to
// and update 'golden' from this point on.
dependency_info = {"-S", {kReference, kUpdate, kNone}};
dependency_info.frame_config.packetizer_temporal_idx = 1;
dependency_info.frame_config.layer_sync = true;
break;
}
pending_frame_configs_[timestamp] = dependency_info;
return dependency_info.frame_config;
}
void ScreenshareLayers::OnRatesUpdated(
size_t stream_index,
const std::vector<uint32_t>& bitrates_bps,
int framerate_fps) {
RTC_DCHECK_LT(stream_index, StreamCount());
RTC_DCHECK_GT(framerate_fps, 0);
RTC_DCHECK_GE(bitrates_bps.size(), 1);
RTC_DCHECK_LE(bitrates_bps.size(), 2);
// `bitrates_bps` uses individual rates per layer, but we want to use the
// accumulated rate here.
uint32_t tl0_kbps = bitrates_bps[0] / 1000;
uint32_t tl1_kbps = tl0_kbps;
if (bitrates_bps.size() > 1) {
tl1_kbps += bitrates_bps[1] / 1000;
}
if (!target_framerate_) {
// First OnRatesUpdated() is called during construction, with the
// configured targets as parameters.
target_framerate_ = framerate_fps;
capture_framerate_ = target_framerate_;
bitrate_updated_ = true;
} else {
if ((capture_framerate_ &&
framerate_fps != static_cast<int>(*capture_framerate_)) ||
(tl0_kbps != layers_[0].target_rate_kbps_) ||
(tl1_kbps != layers_[1].target_rate_kbps_)) {
bitrate_updated_ = true;
}
if (framerate_fps < 0) {
capture_framerate_.reset();
} else {
capture_framerate_ = framerate_fps;
}
}
layers_[0].target_rate_kbps_ = tl0_kbps;
layers_[1].target_rate_kbps_ = tl1_kbps;
}
void ScreenshareLayers::OnEncodeDone(size_t stream_index,
uint32_t rtp_timestamp,
size_t size_bytes,
bool is_keyframe,
int qp,
CodecSpecificInfo* info) {
RTC_DCHECK_LT(stream_index, StreamCount());
if (size_bytes == 0) {
RTC_LOG(LS_WARNING) << "Empty frame; treating as dropped.";
OnFrameDropped(stream_index, rtp_timestamp);
return;
}
std::optional<DependencyInfo> dependency_info;
auto it = pending_frame_configs_.find(rtp_timestamp);
if (it != pending_frame_configs_.end()) {
dependency_info = it->second;
pending_frame_configs_.erase(it);
if (checker_) {
RTC_DCHECK(checker_->CheckTemporalConfig(is_keyframe,
dependency_info->frame_config));
}
}
CodecSpecificInfoVP8& vp8_info = info->codecSpecific.VP8;
GenericFrameInfo& generic_frame_info = info->generic_frame_info.emplace();
if (number_of_temporal_layers_ == 1) {
vp8_info.temporalIdx = kNoTemporalIdx;
vp8_info.layerSync = false;
generic_frame_info.temporal_id = 0;
generic_frame_info.decode_target_indications = {kSwitch};
generic_frame_info.encoder_buffers.emplace_back(
0, /*referenced=*/!is_keyframe, /*updated=*/true);
} else {
int64_t unwrapped_timestamp = time_wrap_handler_.Unwrap(rtp_timestamp);
if (dependency_info) {
vp8_info.temporalIdx =
dependency_info->frame_config.packetizer_temporal_idx;
vp8_info.layerSync = dependency_info->frame_config.layer_sync;
generic_frame_info.temporal_id = vp8_info.temporalIdx;
generic_frame_info.decode_target_indications =
dependency_info->decode_target_indications;
} else {
RTC_DCHECK(is_keyframe);
}
if (is_keyframe) {
vp8_info.temporalIdx = 0;
last_sync_timestamp_ = unwrapped_timestamp;
vp8_info.layerSync = true;
layers_[0].state = TemporalLayer::State::kKeyFrame;
layers_[1].state = TemporalLayer::State::kKeyFrame;
active_layer_ = 1;
info->template_structure =
GetTemplateStructure(number_of_temporal_layers_);
generic_frame_info.temporal_id = vp8_info.temporalIdx;
generic_frame_info.decode_target_indications = {kSwitch, kSwitch};
} else if (active_layer_ >= 0 && layers_[active_layer_].state ==
TemporalLayer::State::kKeyFrame) {
layers_[active_layer_].state = TemporalLayer::State::kNormal;
}
vp8_info.useExplicitDependencies = true;
RTC_DCHECK_EQ(vp8_info.referencedBuffersCount, 0u);
RTC_DCHECK_EQ(vp8_info.updatedBuffersCount, 0u);
// Note that `frame_config` is not derefernced if `is_keyframe`,
// meaning it's never dereferenced if the optional may be unset.
for (int i = 0; i < static_cast<int>(Vp8FrameConfig::Buffer::kCount); ++i) {
bool references = false;
bool updates = is_keyframe;
if (!is_keyframe && dependency_info->frame_config.References(
static_cast<Vp8FrameConfig::Buffer>(i))) {
RTC_DCHECK_LT(vp8_info.referencedBuffersCount,
arraysize(CodecSpecificInfoVP8::referencedBuffers));
references = true;
vp8_info.referencedBuffers[vp8_info.referencedBuffersCount++] = i;
}
if (is_keyframe || dependency_info->frame_config.Updates(
static_cast<Vp8FrameConfig::Buffer>(i))) {
RTC_DCHECK_LT(vp8_info.updatedBuffersCount,
arraysize(CodecSpecificInfoVP8::updatedBuffers));
updates = true;
vp8_info.updatedBuffers[vp8_info.updatedBuffersCount++] = i;
}
if (references || updates)
generic_frame_info.encoder_buffers.emplace_back(i, references, updates);
}
}
encode_framerate_.Update(1, TimeMillis());
if (number_of_temporal_layers_ == 1)
return;
RTC_DCHECK_NE(-1, active_layer_);
if (layers_[active_layer_].state == TemporalLayer::State::kDropped) {
layers_[active_layer_].state = TemporalLayer::State::kQualityBoost;
}
if (qp != -1)
layers_[active_layer_].last_qp = qp;
if (active_layer_ == 0) {
layers_[0].debt_bytes_ += size_bytes;
layers_[1].debt_bytes_ += size_bytes;
++stats_.num_tl0_frames_;
stats_.tl0_target_bitrate_sum_ += layers_[0].target_rate_kbps_;
stats_.tl0_qp_sum_ += qp;
} else if (active_layer_ == 1) {
layers_[1].debt_bytes_ += size_bytes;
++stats_.num_tl1_frames_;
stats_.tl1_target_bitrate_sum_ += layers_[1].target_rate_kbps_;
stats_.tl1_qp_sum_ += qp;
}
}
void ScreenshareLayers::OnFrameDropped(size_t /* stream_index */,
uint32_t /* rtp_timestamp */) {
layers_[active_layer_].state = TemporalLayer::State::kDropped;
++stats_.num_overshoots_;
}
void ScreenshareLayers::OnPacketLossRateUpdate(float /* packet_loss_rate */) {}
void ScreenshareLayers::OnRttUpdate(int64_t /* rtt_ms */) {}
void ScreenshareLayers::OnLossNotification(
const VideoEncoder::LossNotification& /* loss_notification */) {}
FrameDependencyStructure ScreenshareLayers::GetTemplateStructure(
int num_layers) const {
RTC_CHECK_LT(num_layers, 3);
RTC_CHECK_GT(num_layers, 0);
FrameDependencyStructure template_structure;
template_structure.num_decode_targets = num_layers;
switch (num_layers) {
case 1: {
template_structure.templates.resize(2);
template_structure.templates[0].T(0).Dtis("S");
template_structure.templates[1].T(0).Dtis("S").FrameDiffs({1});
return template_structure;
}
case 2: {
template_structure.templates.resize(3);
template_structure.templates[0].T(0).Dtis("SS");
template_structure.templates[1].T(0).Dtis("SS").FrameDiffs({1});
template_structure.templates[2].T(1).Dtis("-S").FrameDiffs({1});
return template_structure;
}
default:
RTC_DCHECK_NOTREACHED();
// To make the compiler happy!
return template_structure;
}
}
bool ScreenshareLayers::TimeToSync(int64_t timestamp) const {
RTC_DCHECK_EQ(1, active_layer_);
RTC_DCHECK_NE(-1, layers_[0].last_qp);
if (layers_[1].last_qp == -1) {
// First frame in TL1 should only depend on TL0 since there are no
// previous frames in TL1.
return true;
}
RTC_DCHECK_NE(-1, last_sync_timestamp_);
int64_t timestamp_diff = timestamp - last_sync_timestamp_;
if (timestamp_diff > kMaxTimeBetweenSyncs) {
// After a certain time, force a sync frame.
return true;
} else if (timestamp_diff < kMinTimeBetweenSyncs) {
// If too soon from previous sync frame, don't issue a new one.
return false;
}
// Issue a sync frame if difference in quality between TL0 and TL1 isn't too
// large.
if (layers_[0].last_qp - layers_[1].last_qp < kQpDeltaThresholdForSync)
return true;
return false;
}
uint32_t ScreenshareLayers::GetCodecTargetBitrateKbps() const {
uint32_t target_bitrate_kbps = layers_[0].target_rate_kbps_;
if (number_of_temporal_layers_ > 1) {
// Calculate a codec target bitrate. This may be higher than TL0, gaining
// quality at the expense of frame rate at TL0. Constraints:
// - TL0 frame rate no less than framerate / kMaxTL0FpsReduction.
// - Target rate * kAcceptableTargetOvershoot should not exceed TL1 rate.
target_bitrate_kbps =
std::min(layers_[0].target_rate_kbps_ * kMaxTL0FpsReduction,
layers_[1].target_rate_kbps_ / kAcceptableTargetOvershoot);
}
return std::max(layers_[0].target_rate_kbps_, target_bitrate_kbps);
}
Vp8EncoderConfig ScreenshareLayers::UpdateConfiguration(size_t stream_index) {
RTC_DCHECK_LT(stream_index, StreamCount());
RTC_DCHECK(min_qp_.has_value());
RTC_DCHECK(max_qp_.has_value());
const uint32_t target_bitrate_kbps = GetCodecTargetBitrateKbps();
// TODO(sprang): We _really_ need to make an overhaul of this class. :(
// If we're dropping frames in order to meet a target framerate, adjust the
// bitrate assigned to the encoder so the total average bitrate is correct.
float encoder_config_bitrate_kbps = target_bitrate_kbps;
if (target_framerate_ && capture_framerate_ &&
*target_framerate_ < *capture_framerate_) {
encoder_config_bitrate_kbps *=
static_cast<float>(*capture_framerate_) / *target_framerate_;
}
if (bitrate_updated_ || encoder_config_.rc_target_bitrate !=
std::make_optional(encoder_config_bitrate_kbps)) {
encoder_config_.rc_target_bitrate = encoder_config_bitrate_kbps;
// Don't reconfigure qp limits during quality boost frames.
if (active_layer_ == -1 ||
layers_[active_layer_].state != TemporalLayer::State::kQualityBoost) {
const int min_qp = min_qp_.value();
const int max_qp = max_qp_.value();
// After a dropped frame, a frame with max qp will be encoded and the
// quality will then ramp up from there. To boost the speed of recovery,
// encode the next frame with lower max qp, if there is sufficient
// bandwidth to do so without causing excessive delay.
// TL0 is the most important to improve since the errors in this layer
// will propagate to TL1.
// Currently, reduce max qp by 20% for TL0 and 15% for TL1.
if (layers_[1].target_rate_kbps_ >= kMinBitrateKbpsForQpBoost) {
layers_[0].enhanced_max_qp = min_qp + (((max_qp - min_qp) * 80) / 100);
layers_[1].enhanced_max_qp = min_qp + (((max_qp - min_qp) * 85) / 100);
} else {
layers_[0].enhanced_max_qp = -1;
layers_[1].enhanced_max_qp = -1;
}
}
if (capture_framerate_) {
int avg_frame_size =
(target_bitrate_kbps * 1000) / (8 * *capture_framerate_);
// Allow max debt to be the size of a single optimal frame.
// TODO(sprang): Determine if this needs to be adjusted by some factor.
// (Lower values may cause more frame drops, higher may lead to queuing
// delays.)
max_debt_bytes_ = avg_frame_size;
}
bitrate_updated_ = false;
}
// Don't try to update boosts state if not active yet.
if (active_layer_ == -1)
return encoder_config_;
if (number_of_temporal_layers_ <= 1)
return encoder_config_;
// If layer is in the quality boost state (following a dropped frame), update
// the configuration with the adjusted (lower) qp and set the state back to
// normal.
unsigned int adjusted_max_qp = max_qp_.value(); // Set the normal max qp.
if (layers_[active_layer_].state == TemporalLayer::State::kQualityBoost) {
if (layers_[active_layer_].enhanced_max_qp != -1) {
// Bitrate is high enough for quality boost, update max qp.
adjusted_max_qp = layers_[active_layer_].enhanced_max_qp;
}
// Regardless of qp, reset the boost state for the next frame.
layers_[active_layer_].state = TemporalLayer::State::kNormal;
}
encoder_config_.rc_max_quantizer = adjusted_max_qp;
return encoder_config_;
}
void ScreenshareLayers::TemporalLayer::UpdateDebt(int64_t delta_ms) {
uint32_t debt_reduction_bytes = target_rate_kbps_ * delta_ms / 8;
if (debt_reduction_bytes >= debt_bytes_) {
debt_bytes_ = 0;
} else {
debt_bytes_ -= debt_reduction_bytes;
}
}
void ScreenshareLayers::UpdateHistograms() {
if (stats_.first_frame_time_ms_ == -1)
return;
int64_t duration_sec =
(TimeMillis() - stats_.first_frame_time_ms_ + 500) / 1000;
if (duration_sec >= metrics::kMinRunTimeInSeconds) {
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.Layer0.FrameRate",
(stats_.num_tl0_frames_ + (duration_sec / 2)) / duration_sec);
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.Layer1.FrameRate",
(stats_.num_tl1_frames_ + (duration_sec / 2)) / duration_sec);
int total_frames = stats_.num_tl0_frames_ + stats_.num_tl1_frames_;
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.FramesPerDrop",
(stats_.num_dropped_frames_ == 0
? 0
: total_frames / stats_.num_dropped_frames_));
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.FramesPerOvershoot",
(stats_.num_overshoots_ == 0 ? 0
: total_frames / stats_.num_overshoots_));
if (stats_.num_tl0_frames_ > 0) {
RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.Screenshare.Layer0.Qp",
stats_.tl0_qp_sum_ / stats_.num_tl0_frames_);
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.Layer0.TargetBitrate",
stats_.tl0_target_bitrate_sum_ / stats_.num_tl0_frames_);
}
if (stats_.num_tl1_frames_ > 0) {
RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.Screenshare.Layer1.Qp",
stats_.tl1_qp_sum_ / stats_.num_tl1_frames_);
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.Video.Screenshare.Layer1.TargetBitrate",
stats_.tl1_target_bitrate_sum_ / stats_.num_tl1_frames_);
}
}
}
} // namespace webrtc
|