File: h26x_packet_buffer.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (542 lines) | stat: -rw-r--r-- 18,256 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
 *  Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/h26x_packet_buffer.h"

#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <limits>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>

#include "absl/algorithm/container.h"
#include "api/array_view.h"
#include "api/video/video_codec_type.h"
#include "api/video/video_frame_type.h"
#include "common_video/h264/h264_common.h"
#include "common_video/h264/pps_parser.h"
#include "common_video/h264/sps_parser.h"
#include "modules/rtp_rtcp/source/rtp_video_header.h"
#include "modules/video_coding/codecs/h264/include/h264_globals.h"
#include "modules/video_coding/h264_sprop_parameter_sets.h"
#include "rtc_base/checks.h"
#include "rtc_base/copy_on_write_buffer.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/sequence_number_util.h"
#ifdef RTC_ENABLE_H265
#include "common_video/h265/h265_common.h"
#endif

namespace webrtc {
namespace {

int64_t EuclideanMod(int64_t n, int64_t div) {
  RTC_DCHECK_GT(div, 0);
  return (n %= div) < 0 ? n + div : n;
}

bool IsFirstPacketOfFragment(const RTPVideoHeaderH264& h264_header) {
  return !h264_header.nalus.empty();
}

bool BeginningOfIdr(const H26xPacketBuffer::Packet& packet) {
  const auto& h264_header =
      std::get<RTPVideoHeaderH264>(packet.video_header.video_type_header);
  const bool contains_idr_nalu =
      absl::c_any_of(h264_header.nalus, [](const auto& nalu_info) {
        return nalu_info.type == H264::NaluType::kIdr;
      });
  switch (h264_header.packetization_type) {
    case kH264StapA:
    case kH264SingleNalu: {
      return contains_idr_nalu;
    }
    case kH264FuA: {
      return contains_idr_nalu && IsFirstPacketOfFragment(h264_header);
    }
  }
}

bool HasSps(const H26xPacketBuffer::Packet& packet) {
  auto& h264_header =
      std::get<RTPVideoHeaderH264>(packet.video_header.video_type_header);
  return absl::c_any_of(h264_header.nalus, [](const auto& nalu_info) {
    return nalu_info.type == H264::NaluType::kSps;
  });
}

int64_t* GetContinuousSequence(ArrayView<int64_t> last_continuous,
                               int64_t unwrapped_seq_num) {
  for (int64_t& last : last_continuous) {
    if (unwrapped_seq_num - 1 == last) {
      return &last;
    }
  }
  return nullptr;
}

#ifdef RTC_ENABLE_H265
bool HasVps(const H26xPacketBuffer::Packet& packet) {
  std::vector<H265::NaluIndex> nalu_indices =
      H265::FindNaluIndices(packet.video_payload);
  return absl::c_any_of((nalu_indices), [&packet](
                                            const H265::NaluIndex& nalu_index) {
    return H265::ParseNaluType(
               packet.video_payload.cdata()[nalu_index.payload_start_offset]) ==
           H265::NaluType::kVps;
  });
}
#endif

}  // namespace

H26xPacketBuffer::H26xPacketBuffer(bool h264_idr_only_keyframes_allowed)
    : h264_idr_only_keyframes_allowed_(h264_idr_only_keyframes_allowed) {
  last_continuous_in_sequence_.fill(std::numeric_limits<int64_t>::min());
}

H26xPacketBuffer::InsertResult H26xPacketBuffer::InsertPadding(
    uint16_t unwrapped_seq_num) {
  int64_t* last_continuous_unwrapped_seq_num =
      GetContinuousSequence(last_continuous_in_sequence_, unwrapped_seq_num);
  if (last_continuous_unwrapped_seq_num == nullptr) {
    last_continuous_in_sequence_[last_continuous_in_sequence_index_] =
        unwrapped_seq_num;
    last_continuous_unwrapped_seq_num =
        &last_continuous_in_sequence_[last_continuous_in_sequence_index_];
    last_continuous_in_sequence_index_ =
        (last_continuous_in_sequence_index_ + 1) %
        last_continuous_in_sequence_.size();
  } else {
    *last_continuous_unwrapped_seq_num = unwrapped_seq_num;
  }
  return {};
}

H26xPacketBuffer::InsertResult H26xPacketBuffer::InsertPacket(
    std::unique_ptr<Packet> packet) {
  RTC_DCHECK(packet->video_header.codec == kVideoCodecH264 ||
             packet->video_header.codec == kVideoCodecH265);

  InsertResult result;

  int64_t unwrapped_seq_num = packet->sequence_number;
  auto& packet_slot = GetPacket(unwrapped_seq_num);
  if (packet_slot != nullptr &&
      AheadOrAt(packet_slot->timestamp, packet->timestamp)) {
    // The incoming `packet` is old or a duplicate.
    return result;
  } else {
    packet_slot = std::move(packet);
  }

  return FindFrames(unwrapped_seq_num);
}

std::unique_ptr<H26xPacketBuffer::Packet>& H26xPacketBuffer::GetPacket(
    int64_t unwrapped_seq_num) {
  return buffer_[EuclideanMod(unwrapped_seq_num, kBufferSize)];
}

bool H26xPacketBuffer::BeginningOfStream(
    const H26xPacketBuffer::Packet& packet) const {
  if (packet.codec() == kVideoCodecH264) {
    return HasSps(packet) ||
           (h264_idr_only_keyframes_allowed_ && BeginningOfIdr(packet));
#ifdef RTC_ENABLE_H265
  } else if (packet.codec() == kVideoCodecH265) {
    return HasVps(packet);
#endif
  }
  RTC_DCHECK_NOTREACHED();
  return false;
}

H26xPacketBuffer::InsertResult H26xPacketBuffer::FindFrames(
    int64_t unwrapped_seq_num) {
  InsertResult result;

  Packet* packet = GetPacket(unwrapped_seq_num).get();
  RTC_CHECK(packet != nullptr);

  // Check if the packet is continuous or the beginning of a new coded video
  // sequence.
  int64_t* last_continuous_unwrapped_seq_num =
      GetContinuousSequence(last_continuous_in_sequence_, unwrapped_seq_num);
  if (last_continuous_unwrapped_seq_num == nullptr) {
    if (!BeginningOfStream(*packet)) {
      return result;
    }

    last_continuous_in_sequence_[last_continuous_in_sequence_index_] =
        unwrapped_seq_num;
    last_continuous_unwrapped_seq_num =
        &last_continuous_in_sequence_[last_continuous_in_sequence_index_];
    last_continuous_in_sequence_index_ =
        (last_continuous_in_sequence_index_ + 1) %
        last_continuous_in_sequence_.size();
  }

  for (int64_t seq_num = unwrapped_seq_num;
       seq_num < unwrapped_seq_num + kBufferSize;) {
    RTC_DCHECK_GE(seq_num, *last_continuous_unwrapped_seq_num);

    // Packets that were never assembled into a completed frame will stay in
    // the 'buffer_'. Check that the `packet` sequence number match the expected
    // unwrapped sequence number.
    if (seq_num != packet->sequence_number) {
      return result;
    }

    *last_continuous_unwrapped_seq_num = seq_num;
    // Last packet of the frame, try to assemble the frame.
    if (packet->marker_bit) {
      uint32_t rtp_timestamp = packet->timestamp;

      // Iterate backwards to find where the frame starts.
      for (int64_t seq_num_start = seq_num;
           seq_num_start > seq_num - kBufferSize; --seq_num_start) {
        auto& prev_packet = GetPacket(seq_num_start - 1);

        if (prev_packet == nullptr || prev_packet->timestamp != rtp_timestamp) {
          if (MaybeAssembleFrame(seq_num_start, seq_num, result)) {
            // Frame was assembled, continue to look for more frames.
            break;
          } else {
            // Frame was not assembled, no subsequent frame will be continuous.
            return result;
          }
        }
      }
    }

    seq_num++;
    packet = GetPacket(seq_num).get();
    if (packet == nullptr) {
      return result;
    }
  }

  return result;
}

bool H26xPacketBuffer::MaybeAssembleFrame(int64_t start_seq_num_unwrapped,
                                          int64_t end_sequence_number_unwrapped,
                                          InsertResult& result) {
#ifdef RTC_ENABLE_H265
  bool has_vps = false;
#endif
  bool has_sps = false;
  bool has_pps = false;
  // Includes IDR, CRA and BLA for HEVC.
  bool has_idr = false;

  int width = -1;
  int height = -1;

  for (int64_t seq_num = start_seq_num_unwrapped;
       seq_num <= end_sequence_number_unwrapped; ++seq_num) {
    const auto& packet = GetPacket(seq_num);
    if (packet->codec() == kVideoCodecH264) {
      const auto& h264_header =
          std::get<RTPVideoHeaderH264>(packet->video_header.video_type_header);
      for (const auto& nalu : h264_header.nalus) {
        has_idr |= nalu.type == H264::NaluType::kIdr;
        has_sps |= nalu.type == H264::NaluType::kSps;
        has_pps |= nalu.type == H264::NaluType::kPps;
      }
      if (has_idr) {
        if (!h264_idr_only_keyframes_allowed_ && (!has_sps || !has_pps)) {
          return false;
        }
      }
#ifdef RTC_ENABLE_H265
    } else if (packet->codec() == kVideoCodecH265) {
      std::vector<H265::NaluIndex> nalu_indices =
          H265::FindNaluIndices(packet->video_payload);
      for (const auto& nalu_index : nalu_indices) {
        uint8_t nalu_type = H265::ParseNaluType(
            packet->video_payload.cdata()[nalu_index.payload_start_offset]);
        has_idr |= (nalu_type >= H265::NaluType::kBlaWLp &&
                    nalu_type <= H265::NaluType::kRsvIrapVcl23);
        has_vps |= nalu_type == H265::NaluType::kVps;
        has_sps |= nalu_type == H265::NaluType::kSps;
        has_pps |= nalu_type == H265::NaluType::kPps;
      }
      if (has_idr) {
        if (!has_vps || !has_sps || !has_pps) {
          return false;
        }
      }
#endif  // RTC_ENABLE_H265
    }

    width = std::max<int>(packet->video_header.width, width);
    height = std::max<int>(packet->video_header.height, height);
  }

  for (int64_t seq_num = start_seq_num_unwrapped;
       seq_num <= end_sequence_number_unwrapped; ++seq_num) {
    auto& packet = GetPacket(seq_num);

    packet->video_header.is_first_packet_in_frame =
        (seq_num == start_seq_num_unwrapped);
    packet->video_header.is_last_packet_in_frame =
        (seq_num == end_sequence_number_unwrapped);

    if (packet->video_header.is_first_packet_in_frame) {
      if (width > 0 && height > 0) {
        packet->video_header.width = width;
        packet->video_header.height = height;
      }

      packet->video_header.frame_type = has_idr
                                            ? VideoFrameType::kVideoFrameKey
                                            : VideoFrameType::kVideoFrameDelta;
    }

    // Only applies to H.264 because start code is inserted by depacktizer for
    // H.265 and out-of-band parameter sets is not supported by H.265.
    if (packet->codec() == kVideoCodecH264) {
      if (!FixH264Packet(*packet)) {
        // The buffer is not cleared actually, but a key frame request is
        // needed.
        result.buffer_cleared = true;
        return false;
      }
    }

    result.packets.push_back(std::move(packet));
  }

  return true;
}

void H26xPacketBuffer::SetSpropParameterSets(
    const std::string& sprop_parameter_sets) {
  if (!h264_idr_only_keyframes_allowed_) {
    RTC_LOG(LS_WARNING) << "Ignore sprop parameter sets because IDR only "
                           "keyframe is not allowed.";
    return;
  }
  H264SpropParameterSets sprop_decoder;
  if (!sprop_decoder.DecodeSprop(sprop_parameter_sets)) {
    return;
  }
  InsertSpsPpsNalus(sprop_decoder.sps_nalu(), sprop_decoder.pps_nalu());
}

void H26xPacketBuffer::InsertSpsPpsNalus(const std::vector<uint8_t>& sps,
                                         const std::vector<uint8_t>& pps) {
  RTC_CHECK(h264_idr_only_keyframes_allowed_);
  constexpr size_t kNaluHeaderOffset = 1;
  if (sps.size() < kNaluHeaderOffset) {
    RTC_LOG(LS_WARNING) << "SPS size  " << sps.size() << " is smaller than "
                        << kNaluHeaderOffset;
    return;
  }
  if ((sps[0] & 0x1f) != H264::NaluType::kSps) {
    RTC_LOG(LS_WARNING) << "SPS Nalu header missing";
    return;
  }
  if (pps.size() < kNaluHeaderOffset) {
    RTC_LOG(LS_WARNING) << "PPS size  " << pps.size() << " is smaller than "
                        << kNaluHeaderOffset;
    return;
  }
  if ((pps[0] & 0x1f) != H264::NaluType::kPps) {
    RTC_LOG(LS_WARNING) << "SPS Nalu header missing";
    return;
  }
  std::optional<SpsParser::SpsState> parsed_sps = SpsParser::ParseSps(
      ArrayView<const uint8_t>(sps).subview(kNaluHeaderOffset));
  std::optional<PpsParser::PpsState> parsed_pps = PpsParser::ParsePps(
      ArrayView<const uint8_t>(pps).subview(kNaluHeaderOffset));

  if (!parsed_sps) {
    RTC_LOG(LS_WARNING) << "Failed to parse SPS.";
  }

  if (!parsed_pps) {
    RTC_LOG(LS_WARNING) << "Failed to parse PPS.";
  }

  if (!parsed_pps || !parsed_sps) {
    return;
  }

  SpsInfo sps_info;
  sps_info.size = sps.size();
  sps_info.width = parsed_sps->width;
  sps_info.height = parsed_sps->height;
  uint8_t* sps_data = new uint8_t[sps_info.size];
  memcpy(sps_data, sps.data(), sps_info.size);
  sps_info.payload.reset(sps_data);
  sps_data_[parsed_sps->id] = std::move(sps_info);

  PpsInfo pps_info;
  pps_info.size = pps.size();
  pps_info.sps_id = parsed_pps->sps_id;
  uint8_t* pps_data = new uint8_t[pps_info.size];
  memcpy(pps_data, pps.data(), pps_info.size);
  pps_info.payload.reset(pps_data);
  pps_data_[parsed_pps->id] = std::move(pps_info);

  RTC_LOG(LS_INFO) << "Inserted SPS id " << parsed_sps->id << " and PPS id "
                   << parsed_pps->id << " (referencing SPS "
                   << parsed_pps->sps_id << ")";
}

// TODO(bugs.webrtc.org/13157): Update the H264 depacketizer so we don't have to
//                              fiddle with the payload at this point.
bool H26xPacketBuffer::FixH264Packet(Packet& packet) {
  constexpr uint8_t kStartCode[] = {0, 0, 0, 1};

  RTPVideoHeader& video_header = packet.video_header;
  RTPVideoHeaderH264& h264_header =
      std::get<RTPVideoHeaderH264>(video_header.video_type_header);

  CopyOnWriteBuffer result;

  if (h264_idr_only_keyframes_allowed_) {
    // Check if sps and pps insertion is needed.
    bool prepend_sps_pps = false;
    auto sps = sps_data_.end();
    auto pps = pps_data_.end();

    for (const NaluInfo& nalu : h264_header.nalus) {
      switch (nalu.type) {
        case H264::NaluType::kSps: {
          SpsInfo& sps_info = sps_data_[nalu.sps_id];
          sps_info.width = video_header.width;
          sps_info.height = video_header.height;
          break;
        }
        case H264::NaluType::kPps: {
          pps_data_[nalu.pps_id].sps_id = nalu.sps_id;
          break;
        }
        case H264::NaluType::kIdr: {
          // If this is the first packet of an IDR, make sure we have the
          // required SPS/PPS and also calculate how much extra space we need
          // in the buffer to prepend the SPS/PPS to the bitstream with start
          // codes.
          if (video_header.is_first_packet_in_frame) {
            if (nalu.pps_id == -1) {
              RTC_LOG(LS_WARNING) << "No PPS id in IDR nalu.";
              return false;
            }

            pps = pps_data_.find(nalu.pps_id);
            if (pps == pps_data_.end()) {
              RTC_LOG(LS_WARNING)
                  << "No PPS with id << " << nalu.pps_id << " received";
              return false;
            }

            sps = sps_data_.find(pps->second.sps_id);
            if (sps == sps_data_.end()) {
              RTC_LOG(LS_WARNING)
                  << "No SPS with id << " << pps->second.sps_id << " received";
              return false;
            }

            // Since the first packet of every keyframe should have its width
            // and height set we set it here in the case of it being supplied
            // out of band.
            video_header.width = sps->second.width;
            video_header.height = sps->second.height;

            // If the SPS/PPS was supplied out of band then we will have saved
            // the actual bitstream in `data`.
            if (sps->second.payload && pps->second.payload) {
              RTC_DCHECK_GT(sps->second.size, 0);
              RTC_DCHECK_GT(pps->second.size, 0);
              prepend_sps_pps = true;
            }
          }
          break;
        }
        default:
          break;
      }
    }

    RTC_CHECK(!prepend_sps_pps ||
              (sps != sps_data_.end() && pps != pps_data_.end()));

    // Insert SPS and PPS if they are missing.
    if (prepend_sps_pps) {
      // Insert SPS.
      result.AppendData(kStartCode);
      result.AppendData(sps->second.payload.get(), sps->second.size);

      // Insert PPS.
      result.AppendData(kStartCode);
      result.AppendData(pps->second.payload.get(), pps->second.size);

      // Update codec header to reflect the newly added SPS and PPS.
      h264_header.nalus.push_back(
          {.type = H264::NaluType::kSps, .sps_id = sps->first, .pps_id = -1});
      h264_header.nalus.push_back({.type = H264::NaluType::kPps,
                                   .sps_id = sps->first,
                                   .pps_id = pps->first});
    }
  }

  // Insert start code.
  switch (h264_header.packetization_type) {
    case kH264StapA: {
      const uint8_t* payload_end =
          packet.video_payload.data() + packet.video_payload.size();
      const uint8_t* nalu_ptr = packet.video_payload.data() + 1;
      while (nalu_ptr < payload_end - 1) {
        // The first two bytes describe the length of the segment, where a
        // segment is the nalu type plus nalu payload.
        uint16_t segment_length = nalu_ptr[0] << 8 | nalu_ptr[1];
        nalu_ptr += 2;

        if (nalu_ptr + segment_length <= payload_end) {
          result.AppendData(kStartCode);
          result.AppendData(nalu_ptr, segment_length);
        }
        nalu_ptr += segment_length;
      }
      packet.video_payload = result;
      return true;
    }

    case kH264FuA: {
      if (IsFirstPacketOfFragment(h264_header)) {
        result.AppendData(kStartCode);
      }
      result.AppendData(packet.video_payload);
      packet.video_payload = result;
      return true;
    }

    case kH264SingleNalu: {
      result.AppendData(kStartCode);
      result.AppendData(packet.video_payload);
      packet.video_payload = result;
      return true;
    }
  }

  RTC_DCHECK_NOTREACHED();
  return false;
}

}  // namespace webrtc