1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/rtp_vp9_ref_finder.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <utility>
#include "api/video/encoded_frame.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_frame_type.h"
#include "modules/rtp_rtcp/source/frame_object.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/codecs/vp9/include/vp9_globals.h"
#include "modules/video_coding/rtp_frame_reference_finder.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/mod_ops.h"
#include "rtc_base/numerics/sequence_number_util.h"
namespace webrtc {
RtpFrameReferenceFinder::ReturnVector RtpVp9RefFinder::ManageFrame(
std::unique_ptr<RtpFrameObject> frame) {
const RTPVideoHeaderVP9& codec_header =
std::get<RTPVideoHeaderVP9>(frame->GetRtpVideoHeader().video_type_header);
if (codec_header.temporal_idx != kNoTemporalIdx)
frame->SetTemporalIndex(codec_header.temporal_idx);
frame->SetSpatialIndex(codec_header.spatial_idx);
frame->SetId(codec_header.picture_id & (kFrameIdLength - 1));
FrameDecision decision;
if (codec_header.temporal_idx >= kMaxTemporalLayers ||
codec_header.spatial_idx >= kMaxSpatialLayers) {
decision = kDrop;
} else if (codec_header.flexible_mode) {
decision = ManageFrameFlexible(frame.get(), codec_header);
} else {
if (codec_header.tl0_pic_idx == kNoTl0PicIdx) {
RTC_LOG(LS_WARNING) << "TL0PICIDX is expected to be present in "
"non-flexible mode.";
decision = kDrop;
} else {
int64_t unwrapped_tl0 =
tl0_unwrapper_.Unwrap(codec_header.tl0_pic_idx & 0xFF);
decision = ManageFrameGof(frame.get(), codec_header, unwrapped_tl0);
if (decision == kStash) {
if (stashed_frames_.size() > kMaxStashedFrames) {
stashed_frames_.pop_back();
}
stashed_frames_.push_front(
{.unwrapped_tl0 = unwrapped_tl0, .frame = std::move(frame)});
}
}
}
RtpFrameReferenceFinder::ReturnVector res;
switch (decision) {
case kStash:
return res;
case kHandOff:
res.push_back(std::move(frame));
RetryStashedFrames(res);
return res;
case kDrop:
return res;
}
return res;
}
RtpVp9RefFinder::FrameDecision RtpVp9RefFinder::ManageFrameFlexible(
RtpFrameObject* frame,
const RTPVideoHeaderVP9& codec_header) {
if (codec_header.num_ref_pics > EncodedFrame::kMaxFrameReferences) {
return kDrop;
}
frame->num_references = codec_header.num_ref_pics;
for (size_t i = 0; i < frame->num_references; ++i) {
frame->references[i] =
Subtract<kFrameIdLength>(frame->Id(), codec_header.pid_diff[i]);
}
FlattenFrameIdAndRefs(frame, codec_header.inter_layer_predicted);
return kHandOff;
}
RtpVp9RefFinder::FrameDecision RtpVp9RefFinder::ManageFrameGof(
RtpFrameObject* frame,
const RTPVideoHeaderVP9& codec_header,
int64_t unwrapped_tl0) {
GofInfo* info;
if (codec_header.ss_data_available) {
if (codec_header.temporal_idx != 0) {
RTC_LOG(LS_WARNING) << "Received scalability structure on a non base "
"layer frame. Scalability structure ignored.";
} else {
if (codec_header.gof.num_frames_in_gof > kMaxVp9FramesInGof) {
return kDrop;
}
for (size_t i = 0; i < codec_header.gof.num_frames_in_gof; ++i) {
if (codec_header.gof.num_ref_pics[i] > kMaxVp9RefPics) {
return kDrop;
}
}
GofInfoVP9 gof = codec_header.gof;
if (gof.num_frames_in_gof == 0) {
RTC_LOG(LS_WARNING) << "Number of frames in GOF is zero. Assume "
"that stream has only one temporal layer.";
gof.SetGofInfoVP9(kTemporalStructureMode1);
}
current_ss_idx_ = Add<kMaxGofSaved>(current_ss_idx_, 1);
scalability_structures_[current_ss_idx_] = gof;
scalability_structures_[current_ss_idx_].pid_start = frame->Id();
gof_info_.emplace(
unwrapped_tl0,
GofInfo(&scalability_structures_[current_ss_idx_], frame->Id()));
}
const auto gof_info_it = gof_info_.find(unwrapped_tl0);
if (gof_info_it == gof_info_.end())
return kStash;
info = &gof_info_it->second;
if (frame->frame_type() == VideoFrameType::kVideoFrameKey) {
frame->num_references = 0;
FrameReceivedVp9(frame->Id(), info);
FlattenFrameIdAndRefs(frame, codec_header.inter_layer_predicted);
return kHandOff;
}
} else {
if (frame->frame_type() == VideoFrameType::kVideoFrameKey) {
RTC_LOG(LS_WARNING) << "Received keyframe without scalability structure";
return kDrop;
}
// tl0_idx is incremented on temporal_idx=0 frames of the lowest spatial
// layer (which spatial_idx is not necessarily zero). Upper spatial layer
// frames with inter-layer prediction use GOF info of their base spatial
// layer frames.
const bool use_prev_gof =
codec_header.temporal_idx == 0 && !codec_header.inter_layer_predicted;
auto gof_info_it =
gof_info_.find(use_prev_gof ? unwrapped_tl0 - 1 : unwrapped_tl0);
// Gof info for this frame is not available yet, stash this frame.
if (gof_info_it == gof_info_.end())
return kStash;
if (codec_header.temporal_idx == 0) {
gof_info_it = gof_info_
.emplace(unwrapped_tl0,
GofInfo(gof_info_it->second.gof, frame->Id()))
.first;
}
info = &gof_info_it->second;
}
// Clean up info for base layers that are too old.
int64_t old_tl0_pic_idx = unwrapped_tl0 - kMaxGofSaved;
auto clean_gof_info_to = gof_info_.lower_bound(old_tl0_pic_idx);
gof_info_.erase(gof_info_.begin(), clean_gof_info_to);
FrameReceivedVp9(frame->Id(), info);
// Make sure we don't miss any frame that could potentially have the
// up switch flag set.
if (MissingRequiredFrameVp9(frame->Id(), *info))
return kStash;
if (codec_header.temporal_up_switch)
up_switch_.emplace(frame->Id(), codec_header.temporal_idx);
// Clean out old info about up switch frames.
uint16_t old_picture_id = Subtract<kFrameIdLength>(frame->Id(), 50);
auto up_switch_erase_to = up_switch_.lower_bound(old_picture_id);
up_switch_.erase(up_switch_.begin(), up_switch_erase_to);
if (codec_header.inter_pic_predicted) {
size_t diff = ForwardDiff<uint16_t, kFrameIdLength>(info->gof->pid_start,
frame->Id());
size_t gof_idx = diff % info->gof->num_frames_in_gof;
if (info->gof->num_ref_pics[gof_idx] > EncodedFrame::kMaxFrameReferences) {
return kDrop;
}
// Populate references according to the scalability structure.
frame->num_references = info->gof->num_ref_pics[gof_idx];
for (size_t i = 0; i < frame->num_references; ++i) {
frame->references[i] = Subtract<kFrameIdLength>(
frame->Id(), info->gof->pid_diff[gof_idx][i]);
// If this is a reference to a frame earlier than the last up switch
// point, then ignore this reference.
if (UpSwitchInIntervalVp9(frame->Id(), codec_header.temporal_idx,
frame->references[i])) {
--frame->num_references;
}
}
} else {
frame->num_references = 0;
}
FlattenFrameIdAndRefs(frame, codec_header.inter_layer_predicted);
return kHandOff;
}
bool RtpVp9RefFinder::MissingRequiredFrameVp9(uint16_t picture_id,
const GofInfo& info) {
size_t diff =
ForwardDiff<uint16_t, kFrameIdLength>(info.gof->pid_start, picture_id);
size_t gof_idx = diff % info.gof->num_frames_in_gof;
size_t temporal_idx = info.gof->temporal_idx[gof_idx];
if (temporal_idx >= kMaxTemporalLayers) {
RTC_LOG(LS_WARNING) << "At most " << kMaxTemporalLayers
<< " temporal "
"layers are supported.";
return true;
}
// For every reference this frame has, check if there is a frame missing in
// the interval (`ref_pid`, `picture_id`) in any of the lower temporal
// layers. If so, we are missing a required frame.
uint8_t num_references = info.gof->num_ref_pics[gof_idx];
for (size_t i = 0; i < num_references; ++i) {
uint16_t ref_pid =
Subtract<kFrameIdLength>(picture_id, info.gof->pid_diff[gof_idx][i]);
for (size_t l = 0; l < temporal_idx; ++l) {
auto missing_frame_it = missing_frames_for_layer_[l].lower_bound(ref_pid);
if (missing_frame_it != missing_frames_for_layer_[l].end() &&
AheadOf<uint16_t, kFrameIdLength>(picture_id, *missing_frame_it)) {
return true;
}
}
}
return false;
}
void RtpVp9RefFinder::FrameReceivedVp9(uint16_t picture_id, GofInfo* info) {
int last_picture_id = info->last_picture_id;
size_t gof_size = std::min(info->gof->num_frames_in_gof, kMaxVp9FramesInGof);
// If there is a gap, find which temporal layer the missing frames
// belong to and add the frame as missing for that temporal layer.
// Otherwise, remove this frame from the set of missing frames.
if (AheadOf<uint16_t, kFrameIdLength>(picture_id, last_picture_id)) {
size_t diff = ForwardDiff<uint16_t, kFrameIdLength>(info->gof->pid_start,
last_picture_id);
size_t gof_idx = diff % gof_size;
last_picture_id = Add<kFrameIdLength>(last_picture_id, 1);
while (last_picture_id != picture_id) {
gof_idx = (gof_idx + 1) % gof_size;
RTC_CHECK(gof_idx < kMaxVp9FramesInGof);
size_t temporal_idx = info->gof->temporal_idx[gof_idx];
if (temporal_idx >= kMaxTemporalLayers) {
RTC_LOG(LS_WARNING) << "At most " << kMaxTemporalLayers
<< " temporal "
"layers are supported.";
return;
}
missing_frames_for_layer_[temporal_idx].insert(last_picture_id);
last_picture_id = Add<kFrameIdLength>(last_picture_id, 1);
}
info->last_picture_id = last_picture_id;
} else {
size_t diff =
ForwardDiff<uint16_t, kFrameIdLength>(info->gof->pid_start, picture_id);
size_t gof_idx = diff % gof_size;
RTC_CHECK(gof_idx < kMaxVp9FramesInGof);
size_t temporal_idx = info->gof->temporal_idx[gof_idx];
if (temporal_idx >= kMaxTemporalLayers) {
RTC_LOG(LS_WARNING) << "At most " << kMaxTemporalLayers
<< " temporal "
"layers are supported.";
return;
}
missing_frames_for_layer_[temporal_idx].erase(picture_id);
}
}
bool RtpVp9RefFinder::UpSwitchInIntervalVp9(uint16_t picture_id,
uint8_t temporal_idx,
uint16_t pid_ref) {
for (auto up_switch_it = up_switch_.upper_bound(pid_ref);
up_switch_it != up_switch_.end() &&
AheadOf<uint16_t, kFrameIdLength>(picture_id, up_switch_it->first);
++up_switch_it) {
if (up_switch_it->second < temporal_idx)
return true;
}
return false;
}
void RtpVp9RefFinder::RetryStashedFrames(
RtpFrameReferenceFinder::ReturnVector& res) {
bool complete_frame = false;
do {
complete_frame = false;
for (auto it = stashed_frames_.begin(); it != stashed_frames_.end();) {
const RTPVideoHeaderVP9& codec_header = std::get<RTPVideoHeaderVP9>(
it->frame->GetRtpVideoHeader().video_type_header);
RTC_DCHECK(!codec_header.flexible_mode);
FrameDecision decision =
ManageFrameGof(it->frame.get(), codec_header, it->unwrapped_tl0);
switch (decision) {
case kStash:
++it;
break;
case kHandOff:
complete_frame = true;
res.push_back(std::move(it->frame));
[[fallthrough]];
case kDrop:
it = stashed_frames_.erase(it);
}
}
} while (complete_frame);
}
void RtpVp9RefFinder::FlattenFrameIdAndRefs(RtpFrameObject* frame,
bool inter_layer_predicted) {
for (size_t i = 0; i < frame->num_references; ++i) {
frame->references[i] =
unwrapper_.Unwrap(frame->references[i]) * kMaxSpatialLayers +
*frame->SpatialIndex();
}
frame->SetId(unwrapper_.Unwrap(frame->Id()) * kMaxSpatialLayers +
*frame->SpatialIndex());
if (inter_layer_predicted &&
frame->num_references + 1 <= EncodedFrame::kMaxFrameReferences) {
frame->references[frame->num_references] = frame->Id() - 1;
++frame->num_references;
}
}
void RtpVp9RefFinder::ClearTo(uint16_t seq_num) {
auto it = stashed_frames_.begin();
while (it != stashed_frames_.end()) {
if (AheadOf<uint16_t>(seq_num, it->frame->first_seq_num())) {
it = stashed_frames_.erase(it);
} else {
++it;
}
}
}
} // namespace webrtc
|