1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*
* Copyright (c) 2024 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/svc/simulcast_to_svc_converter.h"
#include <cstddef>
#include <cstdint>
#include <optional>
#include "api/video/encoded_image.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video_codecs/scalability_mode.h"
#include "api/video_codecs/video_codec.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/svc/create_scalability_structure.h"
#include "modules/video_coding/svc/scalability_mode_util.h"
#include "modules/video_coding/utility/simulcast_utility.h"
#include "rtc_base/checks.h"
namespace webrtc {
SimulcastToSvcConverter::SimulcastToSvcConverter(const VideoCodec& codec) {
config_ = codec;
int num_temporal_layers =
config_.simulcastStream[0].GetNumberOfTemporalLayers();
int num_spatial_layers = config_.numberOfSimulcastStreams;
ScalabilityMode scalability_mode;
switch (num_temporal_layers) {
case 1:
scalability_mode = ScalabilityMode::kL1T1;
break;
case 2:
scalability_mode = ScalabilityMode::kL1T2;
break;
case 3:
scalability_mode = ScalabilityMode::kL1T3;
break;
default:
RTC_DCHECK_NOTREACHED();
}
for (int i = 0; i < num_spatial_layers; ++i) {
config_.spatialLayers[i] = config_.simulcastStream[i];
}
config_.simulcastStream[0] =
config_.simulcastStream[config_.numberOfSimulcastStreams - 1];
config_.VP9()->numberOfSpatialLayers = config_.numberOfSimulcastStreams;
config_.VP9()->numberOfTemporalLayers =
config_.spatialLayers[0].numberOfTemporalLayers;
config_.VP9()->interLayerPred = InterLayerPredMode::kOff;
config_.numberOfSimulcastStreams = 1;
config_.UnsetScalabilityMode();
for (int i = 0; i < num_spatial_layers; ++i) {
layers_.emplace_back(scalability_mode, num_temporal_layers);
}
}
VideoCodec SimulcastToSvcConverter::GetConfig() const {
return config_;
}
void SimulcastToSvcConverter::EncodeStarted(bool force_keyframe) {
// Check if at least one layer was encoded successfully.
bool some_layers_has_completed = false;
for (size_t i = 0; i < layers_.size(); ++i) {
some_layers_has_completed |= !layers_[i].awaiting_frame;
}
for (size_t i = 0; i < layers_.size(); ++i) {
if (layers_[i].awaiting_frame && some_layers_has_completed) {
// Simulcast SVC controller updates pattern on all layers, even
// if some layers has dropped the frame.
// Simulate that behavior for all controllers, not updated
// while rewriting frame descriptors.
layers_[i].video_controller->OnEncodeDone(layers_[i].layer_config);
}
layers_[i].awaiting_frame = true;
auto configs = layers_[i].video_controller->NextFrameConfig(force_keyframe);
RTC_CHECK_EQ(configs.size(), 1u);
layers_[i].layer_config = configs[0];
}
}
bool SimulcastToSvcConverter::ConvertFrame(EncodedImage& encoded_image,
CodecSpecificInfo& codec_specific) {
int sid = encoded_image.SpatialIndex().value_or(0);
encoded_image.SetSimulcastIndex(sid);
encoded_image.SetSpatialIndex(std::nullopt);
codec_specific.end_of_picture = true;
if (codec_specific.scalability_mode) {
int num_temporal_layers =
ScalabilityModeToNumTemporalLayers(*codec_specific.scalability_mode);
RTC_DCHECK_LE(num_temporal_layers, 3);
if (num_temporal_layers == 1) {
codec_specific.scalability_mode = ScalabilityMode::kL1T1;
} else if (num_temporal_layers == 2) {
codec_specific.scalability_mode = ScalabilityMode::kL1T2;
} else if (num_temporal_layers == 3) {
codec_specific.scalability_mode = ScalabilityMode::kL1T3;
}
}
CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9;
vp9_info.num_spatial_layers = 1;
vp9_info.first_active_layer = 0;
vp9_info.first_frame_in_picture = true;
if (vp9_info.ss_data_available) {
vp9_info.width[0] = vp9_info.width[sid];
vp9_info.height[0] = vp9_info.height[sid];
}
auto& video_controller = *layers_[sid].video_controller;
if (codec_specific.generic_frame_info) {
layers_[sid].awaiting_frame = false;
uint8_t tid = encoded_image.TemporalIndex().value_or(0);
auto& frame_config = layers_[sid].layer_config;
RTC_DCHECK_EQ(frame_config.TemporalId(), tid == kNoTemporalIdx ? 0 : tid);
if (frame_config.TemporalId() != (tid == kNoTemporalIdx ? 0 : tid)) {
return false;
}
codec_specific.generic_frame_info =
video_controller.OnEncodeDone(frame_config);
}
if (codec_specific.template_structure) {
auto resolution = codec_specific.template_structure->resolutions[sid];
codec_specific.template_structure = video_controller.DependencyStructure();
codec_specific.template_structure->resolutions.resize(1);
codec_specific.template_structure->resolutions[0] = resolution;
}
return true;
}
SimulcastToSvcConverter::LayerState::LayerState(
ScalabilityMode scalability_mode,
int num_temporal_layers)
: video_controller(CreateScalabilityStructure(scalability_mode)),
awaiting_frame(false) {
VideoBitrateAllocation dummy_bitrates;
for (int i = 0; i < num_temporal_layers; ++i) {
dummy_bitrates.SetBitrate(0, i, 10000);
}
video_controller->OnRatesUpdated(dummy_bitrates);
}
// static
bool SimulcastToSvcConverter::IsConfigSupported(const VideoCodec& codec) {
if (codec.numberOfSimulcastStreams <= 1 ||
!SimulcastUtility::ValidSimulcastParameters(
codec, codec.numberOfSimulcastStreams)) {
return false;
}
// Ensure there's 4:2:1 scaling.
for (int i = 1; i < codec.numberOfSimulcastStreams; ++i) {
if (codec.simulcastStream[i].active &&
codec.simulcastStream[i - 1].active &&
(codec.simulcastStream[i].width !=
codec.simulcastStream[i - 1].width * 2 ||
codec.simulcastStream[i].height !=
codec.simulcastStream[i - 1].height * 2)) {
return false;
}
}
int first_active_layer = -1;
int last_active_layer = -1;
int num_active_layers = 0;
for (int i = 0; i < codec.numberOfSimulcastStreams; ++i) {
if (codec.simulcastStream[i].active) {
if (first_active_layer < 0)
first_active_layer = i;
last_active_layer = i;
++num_active_layers;
}
}
// Active layers must form a continuous segment. Can't have holes, because
// most SVC encoders can't process that.
return num_active_layers == last_active_layer - first_active_layer + 1;
}
} // namespace webrtc
|