1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/svc/svc_rate_allocator.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <numeric>
#include <optional>
#include <vector>
#include "absl/container/inlined_vector.h"
#include "api/field_trials_view.h"
#include "api/units/data_rate.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video/video_bitrate_allocator.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_codec_type.h"
#include "api/video_codecs/scalability_mode.h"
#include "api/video_codecs/video_codec.h"
#include "modules/video_coding/svc/create_scalability_structure.h"
#include "modules/video_coding/svc/scalable_video_controller.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr float kSpatialLayeringRateScalingFactor = 0.55f;
constexpr float kTemporalLayeringRateScalingFactor = 0.55f;
struct ActiveSpatialLayers {
size_t first = 0;
size_t num = 0;
};
ActiveSpatialLayers GetActiveSpatialLayers(const VideoCodec& codec,
size_t num_spatial_layers) {
ActiveSpatialLayers active;
for (active.first = 0; active.first < num_spatial_layers; ++active.first) {
if (codec.spatialLayers[active.first].active) {
break;
}
}
size_t last_active_layer = active.first;
for (; last_active_layer < num_spatial_layers; ++last_active_layer) {
if (!codec.spatialLayers[last_active_layer].active) {
break;
}
}
active.num = last_active_layer - active.first;
return active;
}
std::vector<DataRate> AdjustAndVerify(
const VideoCodec& codec,
size_t first_active_layer,
const std::vector<DataRate>& spatial_layer_rates) {
std::vector<DataRate> adjusted_spatial_layer_rates;
// Keep track of rate that couldn't be applied to the previous layer due to
// max bitrate constraint, try to pass it forward to the next one.
DataRate excess_rate = DataRate::Zero();
for (size_t sl_idx = 0; sl_idx < spatial_layer_rates.size(); ++sl_idx) {
DataRate min_rate = DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + sl_idx].minBitrate);
DataRate max_rate = DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + sl_idx].maxBitrate);
DataRate layer_rate = spatial_layer_rates[sl_idx] + excess_rate;
if (layer_rate < min_rate) {
// Not enough rate to reach min bitrate for desired number of layers,
// abort allocation.
if (spatial_layer_rates.size() == 1) {
return spatial_layer_rates;
}
return adjusted_spatial_layer_rates;
}
if (layer_rate <= max_rate) {
excess_rate = DataRate::Zero();
adjusted_spatial_layer_rates.push_back(layer_rate);
} else {
excess_rate = layer_rate - max_rate;
adjusted_spatial_layer_rates.push_back(max_rate);
}
}
return adjusted_spatial_layer_rates;
}
static std::vector<DataRate> SplitBitrate(size_t num_layers,
DataRate total_bitrate,
float rate_scaling_factor) {
std::vector<DataRate> bitrates;
double denominator = 0.0;
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
denominator += std::pow(rate_scaling_factor, layer_idx);
}
double numerator = std::pow(rate_scaling_factor, num_layers - 1);
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
bitrates.push_back(numerator * total_bitrate / denominator);
numerator /= rate_scaling_factor;
}
const DataRate sum =
std::accumulate(bitrates.begin(), bitrates.end(), DataRate::Zero());
// Keep the sum of split bitrates equal to the total bitrate by adding or
// subtracting bits, which were lost due to rounding, to the latest layer.
if (total_bitrate > sum) {
bitrates.back() += total_bitrate - sum;
} else if (total_bitrate < sum) {
bitrates.back() -= sum - total_bitrate;
}
return bitrates;
}
VideoBitrateAllocation DistributeAllocationToTemporalLayers(
std::vector<DataRate> spatial_layer_birates,
size_t first_active_layer,
size_t num_temporal_layers) {
// Distribute rate across temporal layers. Allocate more bits to lower
// layers since they are used for prediction of higher layers and their
// references are far apart.
VideoBitrateAllocation bitrate_allocation;
for (size_t sl_idx = 0; sl_idx < spatial_layer_birates.size(); ++sl_idx) {
std::vector<DataRate> temporal_layer_bitrates =
SplitBitrate(num_temporal_layers, spatial_layer_birates[sl_idx],
kTemporalLayeringRateScalingFactor);
if (num_temporal_layers == 1) {
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
temporal_layer_bitrates[0].bps());
} else if (num_temporal_layers == 2) {
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
temporal_layer_bitrates[1].bps());
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 1,
temporal_layer_bitrates[0].bps());
} else {
RTC_CHECK_EQ(num_temporal_layers, 3);
// In case of three temporal layers the high layer has two frames and the
// middle layer has one frame within GOP (in between two consecutive low
// layer frames). Thus high layer requires more bits (comparing pure
// bitrate of layer, excluding bitrate of base layers) to keep quality on
// par with lower layers.
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
temporal_layer_bitrates[2].bps());
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 1,
temporal_layer_bitrates[0].bps());
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 2,
temporal_layer_bitrates[1].bps());
}
}
return bitrate_allocation;
}
// Returns the minimum bitrate needed for `num_active_layers` spatial layers to
// become active using the configuration specified by `codec`.
DataRate FindLayerTogglingThreshold(const VideoCodec& codec,
size_t first_active_layer,
size_t num_active_layers) {
if (num_active_layers == 1) {
return DataRate::KilobitsPerSec(codec.spatialLayers[0].minBitrate);
}
if (codec.mode == VideoCodecMode::kRealtimeVideo) {
DataRate lower_bound = DataRate::Zero();
DataRate upper_bound = DataRate::Zero();
if (num_active_layers > 1) {
for (size_t i = 0; i < num_active_layers - 1; ++i) {
lower_bound += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + i].minBitrate);
upper_bound += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + i].maxBitrate);
}
}
upper_bound += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + num_active_layers - 1]
.minBitrate);
// Do a binary search until upper and lower bound is the highest bitrate for
// `num_active_layers` - 1 layers and lowest bitrate for `num_active_layers`
// layers respectively.
while (upper_bound - lower_bound > DataRate::BitsPerSec(1)) {
DataRate try_rate = (lower_bound + upper_bound) / 2;
if (AdjustAndVerify(codec, first_active_layer,
SplitBitrate(num_active_layers, try_rate,
kSpatialLayeringRateScalingFactor))
.size() == num_active_layers) {
upper_bound = try_rate;
} else {
lower_bound = try_rate;
}
}
return upper_bound;
} else {
DataRate toggling_rate = DataRate::Zero();
for (size_t i = 0; i < num_active_layers - 1; ++i) {
toggling_rate += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + i].targetBitrate);
}
toggling_rate += DataRate::KilobitsPerSec(
codec.spatialLayers[first_active_layer + num_active_layers - 1]
.minBitrate);
return toggling_rate;
}
}
} // namespace
SvcRateAllocator::NumLayers SvcRateAllocator::GetNumLayers(
const VideoCodec& codec) {
NumLayers layers;
if (std::optional<ScalabilityMode> scalability_mode =
codec.GetScalabilityMode();
scalability_mode.has_value()) {
if (auto structure = CreateScalabilityStructure(*scalability_mode)) {
ScalableVideoController::StreamLayersConfig config =
structure->StreamConfig();
layers.spatial = config.num_spatial_layers;
layers.temporal = config.num_temporal_layers;
return layers;
}
}
if (codec.codecType == kVideoCodecVP9) {
layers.spatial = codec.VP9().numberOfSpatialLayers;
layers.temporal = codec.VP9().numberOfTemporalLayers;
return layers;
}
layers.spatial = 1;
layers.temporal = 1;
return layers;
}
SvcRateAllocator::SvcRateAllocator(const VideoCodec& codec,
const FieldTrialsView& field_trials)
: codec_(codec),
num_layers_(GetNumLayers(codec)),
experiment_settings_(field_trials),
cumulative_layer_start_bitrates_(GetLayerStartBitrates(codec)),
last_active_layer_count_(0) {
RTC_DCHECK_GT(num_layers_.spatial, 0);
RTC_DCHECK_LE(num_layers_.spatial, kMaxSpatialLayers);
RTC_DCHECK_GT(num_layers_.temporal, 0);
RTC_DCHECK_LE(num_layers_.temporal, 3);
for (size_t layer_idx = 0; layer_idx < num_layers_.spatial; ++layer_idx) {
// Verify min <= target <= max.
if (codec.spatialLayers[layer_idx].active) {
RTC_DCHECK_GT(codec.spatialLayers[layer_idx].maxBitrate, 0);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].maxBitrate,
codec.spatialLayers[layer_idx].minBitrate);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].targetBitrate,
codec.spatialLayers[layer_idx].minBitrate);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].maxBitrate,
codec.spatialLayers[layer_idx].targetBitrate);
}
}
}
VideoBitrateAllocation SvcRateAllocator::Allocate(
VideoBitrateAllocationParameters parameters) {
DataRate total_bitrate = parameters.total_bitrate;
if (codec_.maxBitrate != 0) {
total_bitrate =
std::min(total_bitrate, DataRate::KilobitsPerSec(codec_.maxBitrate));
}
if (codec_.spatialLayers[0].targetBitrate == 0) {
// Delegate rate distribution to encoder wrapper if bitrate thresholds
// are not set.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, total_bitrate.bps());
return bitrate_allocation;
}
const ActiveSpatialLayers active_layers =
GetActiveSpatialLayers(codec_, num_layers_.spatial);
size_t num_spatial_layers = active_layers.num;
if (num_spatial_layers == 0) {
return VideoBitrateAllocation(); // All layers are deactivated.
}
// Figure out how many spatial layers should be active.
if (experiment_settings_.IsEnabled() &&
parameters.stable_bitrate > DataRate::Zero()) {
double hysteresis_factor;
if (codec_.mode == VideoCodecMode::kScreensharing) {
hysteresis_factor = experiment_settings_.GetScreenshareHysteresisFactor();
} else {
hysteresis_factor = experiment_settings_.GetVideoHysteresisFactor();
}
DataRate stable_rate = std::min(total_bitrate, parameters.stable_bitrate);
// First check if bitrate has grown large enough to enable new layers.
size_t num_enabled_with_hysteresis =
FindNumEnabledLayers(stable_rate / hysteresis_factor);
if (num_enabled_with_hysteresis >= last_active_layer_count_) {
num_spatial_layers = num_enabled_with_hysteresis;
} else {
// We could not enable new layers, check if any should be disabled.
num_spatial_layers =
std::min(last_active_layer_count_, FindNumEnabledLayers(stable_rate));
}
} else {
num_spatial_layers = FindNumEnabledLayers(total_bitrate);
}
last_active_layer_count_ = num_spatial_layers;
std::vector<DataRate> spatial_layer_bitrates;
if (codec_.mode == VideoCodecMode::kRealtimeVideo) {
spatial_layer_bitrates = DistributeAllocationToSpatialLayersNormalVideo(
total_bitrate, active_layers.first, num_spatial_layers);
} else {
spatial_layer_bitrates = DistributeAllocationToSpatialLayersScreenSharing(
total_bitrate, active_layers.first, num_spatial_layers);
}
VideoBitrateAllocation allocation = DistributeAllocationToTemporalLayers(
spatial_layer_bitrates, active_layers.first, num_layers_.temporal);
allocation.set_bw_limited(num_spatial_layers < active_layers.num);
return allocation;
}
std::vector<DataRate>
SvcRateAllocator::DistributeAllocationToSpatialLayersNormalVideo(
DataRate total_bitrate,
size_t first_active_layer,
size_t num_spatial_layers) const {
std::vector<DataRate> spatial_layer_rates;
if (num_spatial_layers == 0) {
// Not enough rate for even the base layer. Force allocation at the total
// bitrate anyway.
num_spatial_layers = 1;
spatial_layer_rates.push_back(total_bitrate);
return spatial_layer_rates;
}
spatial_layer_rates =
AdjustAndVerify(codec_, first_active_layer,
SplitBitrate(num_spatial_layers, total_bitrate,
kSpatialLayeringRateScalingFactor));
RTC_DCHECK_EQ(spatial_layer_rates.size(), num_spatial_layers);
return spatial_layer_rates;
}
// Bit-rate is allocated in such a way, that the highest enabled layer will have
// between min and max bitrate, and all others will have exactly target
// bit-rate allocated.
std::vector<DataRate>
SvcRateAllocator::DistributeAllocationToSpatialLayersScreenSharing(
DataRate total_bitrate,
size_t first_active_layer,
size_t num_spatial_layers) const {
std::vector<DataRate> spatial_layer_rates;
if (num_spatial_layers == 0 ||
total_bitrate <
DataRate::KilobitsPerSec(
codec_.spatialLayers[first_active_layer].minBitrate)) {
// Always enable at least one layer.
spatial_layer_rates.push_back(total_bitrate);
return spatial_layer_rates;
}
DataRate allocated_rate = DataRate::Zero();
DataRate top_layer_rate = DataRate::Zero();
size_t sl_idx;
for (sl_idx = first_active_layer;
sl_idx < first_active_layer + num_spatial_layers; ++sl_idx) {
const DataRate min_rate =
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx].minBitrate);
const DataRate target_rate =
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx].targetBitrate);
if (allocated_rate + min_rate > total_bitrate) {
// Use stable rate to determine if layer should be enabled.
break;
}
top_layer_rate = std::min(target_rate, total_bitrate - allocated_rate);
spatial_layer_rates.push_back(top_layer_rate);
allocated_rate += top_layer_rate;
}
if (sl_idx > 0 && total_bitrate - allocated_rate > DataRate::Zero()) {
// Add leftover to the last allocated layer.
top_layer_rate = std::min(
top_layer_rate + (total_bitrate - allocated_rate),
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx - 1].maxBitrate));
spatial_layer_rates.back() = top_layer_rate;
}
return spatial_layer_rates;
}
size_t SvcRateAllocator::FindNumEnabledLayers(DataRate target_rate) const {
if (cumulative_layer_start_bitrates_.empty()) {
return 0;
}
size_t num_enabled_layers = 0;
for (DataRate start_rate : cumulative_layer_start_bitrates_) {
// First layer is always enabled.
if (num_enabled_layers == 0 || start_rate <= target_rate) {
++num_enabled_layers;
} else {
break;
}
}
return num_enabled_layers;
}
DataRate SvcRateAllocator::GetMaxBitrate(const VideoCodec& codec) {
const NumLayers num_layers = GetNumLayers(codec);
const ActiveSpatialLayers active_layers =
GetActiveSpatialLayers(codec, num_layers.spatial);
DataRate max_bitrate = DataRate::Zero();
for (size_t sl_idx = 0; sl_idx < active_layers.num; ++sl_idx) {
max_bitrate += DataRate::KilobitsPerSec(
codec.spatialLayers[active_layers.first + sl_idx].maxBitrate);
}
if (codec.maxBitrate != 0) {
max_bitrate =
std::min(max_bitrate, DataRate::KilobitsPerSec(codec.maxBitrate));
}
return max_bitrate;
}
DataRate SvcRateAllocator::GetPaddingBitrate(const VideoCodec& codec) {
auto start_bitrate = GetLayerStartBitrates(codec);
if (start_bitrate.empty()) {
return DataRate::Zero(); // All layers are deactivated.
}
return start_bitrate.back();
}
absl::InlinedVector<DataRate, kMaxSpatialLayers>
SvcRateAllocator::GetLayerStartBitrates(const VideoCodec& codec) {
absl::InlinedVector<DataRate, kMaxSpatialLayers> start_bitrates;
const NumLayers num_layers = GetNumLayers(codec);
const ActiveSpatialLayers active_layers =
GetActiveSpatialLayers(codec, num_layers.spatial);
DataRate last_rate = DataRate::Zero();
for (size_t i = 1; i <= active_layers.num; ++i) {
DataRate layer_toggling_rate =
FindLayerTogglingThreshold(codec, active_layers.first, i);
start_bitrates.push_back(layer_toggling_rate);
RTC_DCHECK_LE(last_rate, layer_toggling_rate);
last_rate = layer_toggling_rate;
}
return start_bitrates;
}
} // namespace webrtc
|