1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing/timestamp_extrapolator.h"
#include <stdint.h>
#include <cstdlib>
#include <limits>
#include <optional>
#include <string>
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/metrics.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
using ::testing::Eq;
using ::testing::Optional;
namespace {
constexpr Frequency kRtpHz = Frequency::KiloHertz(90);
constexpr Frequency k25Fps = Frequency::Hertz(25);
constexpr TimeDelta k25FpsDelay = 1 / k25Fps;
} // namespace
TEST(TimestampExtrapolatorTest, ExtrapolationOccursAfter2Packets) {
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
// No packets so no timestamp.
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(90000), Eq(std::nullopt));
uint32_t rtp = 90000;
clock.AdvanceTime(k25FpsDelay);
// First result is a bit confusing since it is based off the "start" time,
// which is arbitrary.
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp + 90000),
Optional(clock.CurrentTime() + TimeDelta::Seconds(1)));
}
TEST(TimestampExtrapolatorTest, ResetsAfter10SecondPause) {
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = 90000;
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
rtp += 10 * kRtpHz.hertz();
clock.AdvanceTime(TimeDelta::Seconds(10) + TimeDelta::Micros(1));
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
}
TEST(TimestampExtrapolatorTest, TimestampExtrapolatesMultipleRtpWrapArounds) {
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = std::numeric_limits<uint32_t>::max();
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
// One overflow. Static cast to avoid undefined behaviour with +=.
rtp += static_cast<uint32_t>(kRtpHz / k25Fps);
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
// Assert that extrapolation works across the boundary as expected.
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp + 90000),
Optional(clock.CurrentTime() + TimeDelta::Seconds(1)));
// This is not quite 1s since the math always rounds up.
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp - 90000),
Optional(clock.CurrentTime() - TimeDelta::Millis(999)));
// In order to avoid a wrap arounds reset, add a packet every 10s until we
// overflow twice.
constexpr TimeDelta kRtpOverflowDelay =
std::numeric_limits<uint32_t>::max() / kRtpHz;
const Timestamp overflow_time = clock.CurrentTime() + kRtpOverflowDelay * 2;
while (clock.CurrentTime() < overflow_time) {
clock.AdvanceTime(TimeDelta::Seconds(10));
// Static-cast before += to avoid undefined behaviour of overflow.
rtp += static_cast<uint32_t>(kRtpHz * TimeDelta::Seconds(10));
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
}
}
TEST(TimestampExtrapolatorTest, NegativeRtpTimestampWrapAround) {
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = 0;
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
// Go backwards! Static cast to avoid undefined behaviour with -=.
rtp -= static_cast<uint32_t>(kRtpHz.hertz());
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime() - TimeDelta::Seconds(1)));
}
TEST(TimestampExtrapolatorTest, NegativeRtpTimestampWrapAroundSecondScenario) {
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = 0;
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
// Go backwards! Static cast to avoid undefined behaviour with -=.
rtp -= static_cast<uint32_t>(kRtpHz * TimeDelta::Seconds(10));
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp), std::nullopt);
}
TEST(TimestampExtrapolatorTest, Slow90KHzClock) {
// This simulates a slow camera, which produces frames at 24Hz instead of
// 25Hz. The extrapolator should be able to resolve this with enough data.
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
constexpr TimeDelta k24FpsDelay = 1 / Frequency::Hertz(24);
uint32_t rtp = 90000;
// Slow camera will increment RTP at 25 FPS rate even though its producing at
// 24 FPS. After 25 frames the extrapolator should settle at this rate.
for (int i = 0; i < 25; ++i) {
ts_extrapolator.Update(clock.CurrentTime(), rtp);
rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k24FpsDelay);
}
// The camera would normally produce 25 frames in 90K ticks, but is slow
// so takes 1s + k24FpsDelay for 90K ticks.
constexpr Frequency kSlowRtpHz = 90000 / (25 * k24FpsDelay);
// The extrapolator will be predicting that time at millisecond precision.
auto ts = ts_extrapolator.ExtrapolateLocalTime(rtp + kSlowRtpHz.hertz());
ASSERT_TRUE(ts.has_value());
EXPECT_EQ(ts->ms(), clock.TimeInMilliseconds() + 1000);
}
TEST(TimestampExtrapolatorTest, Fast90KHzClock) {
// This simulates a fast camera, which produces frames at 26Hz instead of
// 25Hz. The extrapolator should be able to resolve this with enough data.
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
constexpr TimeDelta k26FpsDelay = 1 / Frequency::Hertz(26);
uint32_t rtp = 90000;
// Fast camera will increment RTP at 25 FPS rate even though its producing at
// 26 FPS. After 25 frames the extrapolator should settle at this rate.
for (int i = 0; i < 25; ++i) {
ts_extrapolator.Update(clock.CurrentTime(), rtp);
rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k26FpsDelay);
}
// The camera would normally produce 25 frames in 90K ticks, but is slow
// so takes 1s + k24FpsDelay for 90K ticks.
constexpr Frequency kSlowRtpHz = 90000 / (25 * k26FpsDelay);
// The extrapolator will be predicting that time at millisecond precision.
auto ts = ts_extrapolator.ExtrapolateLocalTime(rtp + kSlowRtpHz.hertz());
ASSERT_TRUE(ts.has_value());
EXPECT_EQ(ts->ms(), clock.TimeInMilliseconds() + 1000);
}
TEST(TimestampExtrapolatorTest, TimestampJump) {
// This simulates a jump in RTP timestamp, which could occur if a camera was
// swapped for example.
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = 90000;
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), rtp);
rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), rtp);
rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp + 90000),
Optional(clock.CurrentTime() + TimeDelta::Seconds(1)));
// Jump RTP.
uint32_t new_rtp = 1337 * 90000;
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), new_rtp);
new_rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), new_rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(new_rtp),
Optional(clock.CurrentTime()));
}
TEST(TimestampExtrapolatorTest, GapInReceivedFrames) {
SimulatedClock clock(
Timestamp::Seconds(std::numeric_limits<uint32_t>::max() / 90000 - 31));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = std::numeric_limits<uint32_t>::max();
clock.AdvanceTime(k25FpsDelay);
ts_extrapolator.Update(clock.CurrentTime(), rtp);
rtp += 30 * 90000;
clock.AdvanceTime(TimeDelta::Seconds(30));
ts_extrapolator.Update(clock.CurrentTime(), rtp);
EXPECT_THAT(ts_extrapolator.ExtrapolateLocalTime(rtp),
Optional(clock.CurrentTime()));
}
TEST(TimestampExtrapolatorTest, EstimatedClockDriftHistogram) {
const std::string kHistogramName = "WebRTC.Video.EstimatedClockDrift_ppm";
constexpr int kPpmTolerance = 50;
constexpr int kToPpmFactor = 1e6;
constexpr int kMinimumSamples = 3000;
constexpr Frequency k24Fps = Frequency::Hertz(24);
constexpr TimeDelta k24FpsDelay = 1 / k24Fps;
// This simulates a remote clock without drift with frames produced at 25 fps.
// Local scope to trigger the destructor of TimestampExtrapolator.
{
// Clear all histogram data.
metrics::Reset();
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = 90000;
for (int i = 0; i < kMinimumSamples; ++i) {
ts_extrapolator.Update(clock.CurrentTime(), rtp);
rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k25FpsDelay);
}
}
EXPECT_EQ(metrics::NumSamples(kHistogramName), 1);
const int kExpectedIdealClockDriftPpm = 0;
EXPECT_NEAR(kExpectedIdealClockDriftPpm, metrics::MinSample(kHistogramName),
kPpmTolerance);
// This simulates a slow remote clock, where the RTP timestamps are
// incremented as if the camera was 25 fps even though frames arrive at 24
// fps. Local scope to trigger the destructor of TimestampExtrapolator.
{
// Clear all histogram data.
metrics::Reset();
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = 90000;
for (int i = 0; i < kMinimumSamples; ++i) {
ts_extrapolator.Update(clock.CurrentTime(), rtp);
rtp += kRtpHz / k25Fps;
clock.AdvanceTime(k24FpsDelay);
}
}
EXPECT_EQ(metrics::NumSamples(kHistogramName), 1);
const int kExpectedSlowClockDriftPpm =
std::abs(k24Fps / k25Fps - 1.0) * kToPpmFactor;
EXPECT_NEAR(kExpectedSlowClockDriftPpm, metrics::MinSample(kHistogramName),
kPpmTolerance);
// This simulates a fast remote clock, where the RTP timestamps are
// incremented as if the camera was 24 fps even though frames arrive at 25
// fps. Local scope to trigger the destructor of TimestampExtrapolator.
{
// Clear all histogram data.
metrics::Reset();
SimulatedClock clock(Timestamp::Millis(1337));
TimestampExtrapolator ts_extrapolator(clock.CurrentTime());
uint32_t rtp = 90000;
for (int i = 0; i < kMinimumSamples; ++i) {
ts_extrapolator.Update(clock.CurrentTime(), rtp);
rtp += kRtpHz / k24Fps;
clock.AdvanceTime(k25FpsDelay);
}
}
EXPECT_EQ(metrics::NumSamples(kHistogramName), 1);
const int kExpectedFastClockDriftPpm = (k25Fps / k24Fps - 1.0) * kToPpmFactor;
EXPECT_NEAR(kExpectedFastClockDriftPpm, metrics::MinSample(kHistogramName),
kPpmTolerance);
}
} // namespace webrtc
|