1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
|
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing/timing.h"
#include <cstdint>
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
namespace webrtc {
namespace {
constexpr Frequency k25Fps = Frequency::Hertz(25);
constexpr Frequency k90kHz = Frequency::KiloHertz(90);
MATCHER(HasConsistentVideoDelayTimings, "") {
// Delays should be non-negative.
bool p1 = arg.minimum_delay >= TimeDelta::Zero();
bool p2 = arg.estimated_max_decode_time >= TimeDelta::Zero();
bool p3 = arg.render_delay >= TimeDelta::Zero();
bool p4 = arg.min_playout_delay >= TimeDelta::Zero();
bool p5 = arg.max_playout_delay >= TimeDelta::Zero();
bool p6 = arg.target_delay >= TimeDelta::Zero();
bool p7 = arg.current_delay >= TimeDelta::Zero();
*result_listener << "\np: " << p1 << p2 << p3 << p4 << p5 << p6 << p7;
bool p = p1 && p2 && p3 && p4 && p5 && p6 && p7;
// Delays should be internally consistent.
bool m1 = arg.minimum_delay <= arg.target_delay;
if (!m1) {
*result_listener << "\nminimum_delay: " << ToString(arg.minimum_delay)
<< ", " << "target_delay: " << ToString(arg.target_delay)
<< "\n";
}
bool m2 = arg.minimum_delay <= arg.current_delay;
if (!m2) {
*result_listener << "\nminimum_delay: " << ToString(arg.minimum_delay)
<< ", "
<< "current_delay: " << ToString(arg.current_delay);
}
bool m3 = arg.target_delay >= arg.min_playout_delay;
if (!m3) {
*result_listener << "\ntarget_delay: " << ToString(arg.target_delay) << ", "
<< "min_playout_delay: " << ToString(arg.min_playout_delay)
<< "\n";
}
// TODO(crbug.com/webrtc/15197): Uncomment when this is guaranteed.
// bool m4 = arg.target_delay <= arg.max_playout_delay;
bool m5 = arg.current_delay >= arg.min_playout_delay;
if (!m5) {
*result_listener << "\ncurrent_delay: " << ToString(arg.current_delay)
<< ", "
<< "min_playout_delay: " << ToString(arg.min_playout_delay)
<< "\n";
}
bool m6 = arg.current_delay <= arg.max_playout_delay;
if (!m6) {
*result_listener << "\ncurrent_delay: " << ToString(arg.current_delay)
<< ", "
<< "max_playout_delay: " << ToString(arg.max_playout_delay)
<< "\n";
}
bool m = m1 && m2 && m3 && m5 && m6;
return p && m;
}
} // namespace
TEST(VCMTimingTest, JitterDelay) {
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(0);
VCMTiming timing(&clock, field_trials);
timing.Reset();
uint32_t timestamp = 0;
timing.UpdateCurrentDelay(timestamp);
timing.Reset();
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
TimeDelta jitter_delay = TimeDelta::Millis(20);
timing.SetJitterDelay(jitter_delay);
timing.UpdateCurrentDelay(timestamp);
timing.set_render_delay(TimeDelta::Zero());
auto wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
// First update initializes the render time. Since we have no decode delay
// we get wait_time = renderTime - now - renderDelay = jitter.
EXPECT_EQ(jitter_delay, wait_time);
jitter_delay += TimeDelta::Millis(VCMTiming::kDelayMaxChangeMsPerS + 10);
timestamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.SetJitterDelay(jitter_delay);
timing.UpdateCurrentDelay(timestamp);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
// Since we gradually increase the delay we only get 100 ms every second.
EXPECT_EQ(jitter_delay - TimeDelta::Millis(10), wait_time);
timestamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.UpdateCurrentDelay(timestamp);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
EXPECT_EQ(jitter_delay, wait_time);
// Insert frames without jitter, verify that this gives the exact wait time.
const int kNumFrames = 300;
for (int i = 0; i < kNumFrames; i++) {
clock.AdvanceTime(1 / k25Fps);
timestamp += k90kHz / k25Fps;
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
}
timing.UpdateCurrentDelay(timestamp);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
EXPECT_EQ(jitter_delay, wait_time);
// Add decode time estimates for 1 second.
const TimeDelta kDecodeTime = TimeDelta::Millis(10);
for (int i = 0; i < k25Fps.hertz(); i++) {
clock.AdvanceTime(kDecodeTime);
timing.StopDecodeTimer(kDecodeTime, clock.CurrentTime());
timestamp += k90kHz / k25Fps;
clock.AdvanceTime(1 / k25Fps - kDecodeTime);
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
}
timing.UpdateCurrentDelay(timestamp);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
EXPECT_EQ(jitter_delay, wait_time);
const TimeDelta kMinTotalDelay = TimeDelta::Millis(200);
timing.set_min_playout_delay(kMinTotalDelay);
clock.AdvanceTimeMilliseconds(5000);
timestamp += 5 * 90000;
timing.UpdateCurrentDelay(timestamp);
const TimeDelta kRenderDelay = TimeDelta::Millis(10);
timing.set_render_delay(kRenderDelay);
wait_time = timing.MaxWaitingTime(
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
/*too_many_frames_queued=*/false);
// We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime
// (10) to wait.
EXPECT_EQ(kMinTotalDelay - kDecodeTime - kRenderDelay, wait_time);
// The total video delay should be equal to the min total delay.
EXPECT_EQ(kMinTotalDelay, timing.TargetVideoDelay());
// Reset playout delay.
timing.set_min_playout_delay(TimeDelta::Zero());
clock.AdvanceTimeMilliseconds(5000);
timestamp += 5 * 90000;
timing.UpdateCurrentDelay(timestamp);
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, TimestampWrapAround) {
constexpr auto kStartTime = Timestamp::Millis(1337);
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(kStartTime);
VCMTiming timing(&clock, field_trials);
// Provoke a wrap-around. The fifth frame will have wrapped at 25 fps.
constexpr uint32_t kRtpTicksPerFrame = k90kHz / k25Fps;
uint32_t timestamp = 0xFFFFFFFFu - 3 * kRtpTicksPerFrame;
for (int i = 0; i < 5; ++i) {
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
clock.AdvanceTime(1 / k25Fps);
timestamp += kRtpTicksPerFrame;
EXPECT_EQ(kStartTime + 3 / k25Fps,
timing.RenderTime(0xFFFFFFFFu, clock.CurrentTime()));
// One ms later in 90 kHz.
EXPECT_EQ(kStartTime + 3 / k25Fps + TimeDelta::Millis(1),
timing.RenderTime(89u, clock.CurrentTime()));
}
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, UseLowLatencyRenderer) {
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(0);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// Default is false.
EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
// False if min playout delay > 0.
timing.set_playout_delay({TimeDelta::Millis(10), TimeDelta::Millis(20)});
EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
// True if min==0, max > 0.
timing.set_playout_delay({TimeDelta::Zero(), TimeDelta::Millis(20)});
EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
// True if min==max==0.
timing.set_playout_delay({TimeDelta::Zero(), TimeDelta::Zero()});
EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
// True also for max playout delay==500 ms.
timing.set_playout_delay({TimeDelta::Zero(), TimeDelta::Millis(500)});
EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering);
// False if max playout delay > 500 ms.
timing.set_playout_delay({TimeDelta::Zero(), TimeDelta::Millis(501)});
EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering);
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) {
// This is the default path when the RTP playout delay header extension is set
// to min==0 and max==0.
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60);
constexpr Timestamp kZeroRenderTime = Timestamp::Zero();
SimulatedClock clock(kStartTimeUs);
test::ScopedKeyValueConfig field_trials;
VCMTiming timing(&clock, field_trials);
timing.Reset();
timing.set_playout_delay({TimeDelta::Zero(), TimeDelta::Zero()});
for (int i = 0; i < 10; ++i) {
clock.AdvanceTime(kTimeDelta);
Timestamp now = clock.CurrentTime();
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
}
// Another frame submitted at the same time also returns a negative max
// waiting time.
Timestamp now = clock.CurrentTime();
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
// MaxWaitingTime should be less than zero even if there's a burst of frames.
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) {
// The minimum pacing is enabled by a field trial and active if the RTP
// playout delay header extension is set to min==0.
constexpr TimeDelta kMinPacing = TimeDelta::Millis(3);
test::ScopedKeyValueConfig field_trials(
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60);
constexpr auto kZeroRenderTime = Timestamp::Zero();
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// MaxWaitingTime() returns zero for evenly spaced video frames.
for (int i = 0; i < 10; ++i) {
clock.AdvanceTime(kTimeDelta);
Timestamp now = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
timing.SetLastDecodeScheduledTimestamp(now);
}
// Another frame submitted at the same time is paced according to the field
// trial setting.
auto now = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing);
// If there's a burst of frames, the wait time is calculated based on next
// decode time.
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing);
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing);
// Allow a few ms to pass, this should be subtracted from the MaxWaitingTime.
constexpr TimeDelta kTwoMs = TimeDelta::Millis(2);
clock.AdvanceTime(kTwoMs);
now = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing - kTwoMs);
// A frame is decoded at the current time, the wait time should be restored to
// pacing delay.
timing.SetLastDecodeScheduledTimestamp(now);
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
kMinPacing);
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
// The minimum pacing is enabled by a field trial but should not have any
// effect if render_time_ms is greater than 0;
test::ScopedKeyValueConfig field_trials(
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0);
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock, field_trials);
timing.Reset();
clock.AdvanceTime(kTimeDelta);
auto now = clock.CurrentTime();
Timestamp render_time = now + TimeDelta::Millis(30);
// Estimate the internal processing delay from the first frame.
TimeDelta estimated_processing_delay =
(render_time - now) -
timing.MaxWaitingTime(render_time, now,
/*too_many_frames_queued=*/false);
EXPECT_GT(estimated_processing_delay, TimeDelta::Zero());
// Any other frame submitted at the same time should be scheduled according to
// its render time.
for (int i = 0; i < 5; ++i) {
render_time += kTimeDelta;
EXPECT_EQ(timing.MaxWaitingTime(render_time, now,
/*too_many_frames_queued=*/false),
render_time - now - estimated_processing_delay);
}
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) {
// The minimum pacing is enabled by a field trial and active if the RTP
// playout delay header extension is set to min==0.
constexpr TimeDelta kMinPacing = TimeDelta::Millis(3);
test::ScopedKeyValueConfig field_trials(
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0);
constexpr auto kZeroRenderTime = Timestamp::Zero();
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// MaxWaitingTime() returns zero for evenly spaced video frames.
for (int i = 0; i < 10; ++i) {
clock.AdvanceTime(kTimeDelta);
auto now = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
/*too_many_frames_queued=*/false),
TimeDelta::Zero());
timing.SetLastDecodeScheduledTimestamp(now);
}
// Another frame submitted at the same time is paced according to the field
// trial setting.
auto now_ms = clock.CurrentTime();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
/*too_many_frames_queued=*/false),
kMinPacing);
// MaxWaitingTime returns 0 even if there's a burst of frames if
// too_many_frames_queued is set to true.
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
/*too_many_frames_queued=*/true),
TimeDelta::Zero());
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
/*too_many_frames_queued=*/true),
TimeDelta::Zero());
EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, UpdateCurrentDelayCapsWhenOffByMicroseconds) {
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(0);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// Set larger initial current delay.
timing.set_min_playout_delay(TimeDelta::Millis(200));
timing.UpdateCurrentDelay(Timestamp::Millis(900), Timestamp::Millis(1000));
// Add a few microseconds to ensure that the delta of decode time is 0 after
// rounding, and should reset to the target delay.
timing.set_min_playout_delay(TimeDelta::Millis(50));
Timestamp decode_time = Timestamp::Millis(1337);
Timestamp render_time =
decode_time + TimeDelta::Millis(10) + TimeDelta::Micros(37);
timing.UpdateCurrentDelay(render_time, decode_time);
EXPECT_EQ(timing.GetTimings().current_delay, timing.TargetVideoDelay());
// TODO(crbug.com/webrtc/15197): Fix this.
// EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, GetTimings) {
test::ScopedKeyValueConfig field_trials;
SimulatedClock clock(33);
VCMTiming timing(&clock, field_trials);
timing.Reset();
// Setup.
TimeDelta render_delay = TimeDelta::Millis(11);
timing.set_render_delay(render_delay);
TimeDelta min_playout_delay = TimeDelta::Millis(50);
TimeDelta max_playout_delay = TimeDelta::Millis(500);
timing.set_playout_delay({min_playout_delay, max_playout_delay});
// On complete.
timing.IncomingTimestamp(3000, clock.CurrentTime());
clock.AdvanceTimeMilliseconds(1);
// On decodable.
Timestamp render_time =
timing.RenderTime(/*next_temporal_unit_rtp=*/3000, clock.CurrentTime());
TimeDelta minimum_delay = TimeDelta::Millis(123);
timing.SetJitterDelay(minimum_delay);
timing.UpdateCurrentDelay(render_time, clock.CurrentTime());
clock.AdvanceTimeMilliseconds(100);
// On decoded.
TimeDelta decode_time = TimeDelta::Millis(4);
timing.StopDecodeTimer(decode_time, clock.CurrentTime());
VCMTiming::VideoDelayTimings timings = timing.GetTimings();
EXPECT_EQ(timings.num_decoded_frames, 1u);
EXPECT_EQ(timings.minimum_delay, minimum_delay);
// A single decoded frame is not enough to calculate p95.
EXPECT_EQ(timings.estimated_max_decode_time, TimeDelta::Zero());
EXPECT_EQ(timings.render_delay, render_delay);
EXPECT_EQ(timings.min_playout_delay, min_playout_delay);
EXPECT_EQ(timings.max_playout_delay, max_playout_delay);
EXPECT_EQ(timings.target_delay, minimum_delay);
EXPECT_EQ(timings.current_delay, minimum_delay);
EXPECT_THAT(timings, HasConsistentVideoDelayTimings());
}
TEST(VCMTimingTest, GetTimingsBeforeAndAfterValidRtpTimestamp) {
SimulatedClock clock(33);
test::ScopedKeyValueConfig field_trials;
VCMTiming timing(&clock, field_trials);
// Setup.
TimeDelta min_playout_delay = TimeDelta::Millis(50);
timing.set_playout_delay({min_playout_delay, TimeDelta::Millis(500)});
// On decodable frames before valid rtp timestamp.
constexpr int decodeable_frame_cnt = 10;
constexpr uint32_t any_time_elapsed = 17;
constexpr uint32_t rtp_ts_base = 3000;
constexpr uint32_t rtp_ts_delta_10fps = 9000;
constexpr uint32_t frame_ts_delta_10fps = 100;
uint32_t rtp_ts = rtp_ts_base;
for (int i = 0; i < decodeable_frame_cnt; i++) {
clock.AdvanceTimeMilliseconds(any_time_elapsed);
rtp_ts += rtp_ts_delta_10fps;
Timestamp render_time = timing.RenderTime(rtp_ts, clock.CurrentTime());
// Render time should be CurrentTime, because timing.IncomingTimestamp has
// not been called yet.
EXPECT_EQ(render_time, clock.CurrentTime());
}
// On frame complete, which one not 'metadata.delayed_by_retransmission'
Timestamp valid_frame_ts = clock.CurrentTime();
timing.IncomingTimestamp(rtp_ts, valid_frame_ts);
clock.AdvanceTimeMilliseconds(any_time_elapsed);
rtp_ts += rtp_ts_delta_10fps;
Timestamp render_time = timing.RenderTime(rtp_ts, clock.CurrentTime());
// Render time should be relative to the latest valid frame timestamp.
EXPECT_EQ(render_time, valid_frame_ts +
TimeDelta::Millis(frame_ts_delta_10fps) +
min_playout_delay);
}
} // namespace webrtc
|