File: ivf_file_reader.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (253 lines) | stat: -rw-r--r-- 8,402 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
 *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/utility/ivf_file_reader.h"

#include <cstddef>
#include <cstdint>
#include <cstring>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>

#include "api/scoped_refptr.h"
#include "api/video/encoded_image.h"
#include "api/video/video_codec_type.h"
#include "api/video/video_frame_type.h"
#include "api/video_codecs/video_codec.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/video_coding/utility/ivf_defines.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/system/file_wrapper.h"

namespace webrtc {
namespace {

constexpr size_t kIvfFrameHeaderSize = 12;
constexpr int kCodecTypeBytesCount = 4;

constexpr uint8_t kFileHeaderStart[kCodecTypeBytesCount] = {'D', 'K', 'I', 'F'};
constexpr uint8_t kVp8Header[kCodecTypeBytesCount] = {'V', 'P', '8', '0'};
constexpr uint8_t kVp9Header[kCodecTypeBytesCount] = {'V', 'P', '9', '0'};
constexpr uint8_t kAv1Header[kCodecTypeBytesCount] = {'A', 'V', '0', '1'};
constexpr uint8_t kH264Header[kCodecTypeBytesCount] = {'H', '2', '6', '4'};
constexpr uint8_t kH265Header[kCodecTypeBytesCount] = {'H', '2', '6', '5'};

// RTP standard required 90kHz clock rate.
constexpr int32_t kRtpClockRateHz = 90000;

}  // namespace

std::unique_ptr<IvfFileReader> IvfFileReader::Create(FileWrapper file) {
  auto reader =
      std::unique_ptr<IvfFileReader>(new IvfFileReader(std::move(file)));
  if (!reader->Reset()) {
    return nullptr;
  }
  return reader;
}
IvfFileReader::~IvfFileReader() {
  Close();
}

bool IvfFileReader::Reset() {
  // Set error to true while initialization.
  has_error_ = true;
  if (!file_.Rewind()) {
    RTC_LOG(LS_ERROR) << "Failed to rewind IVF file";
    return false;
  }

  uint8_t ivf_header[kIvfHeaderSize] = {0};
  size_t read = file_.Read(&ivf_header, kIvfHeaderSize);
  if (read != kIvfHeaderSize) {
    RTC_LOG(LS_ERROR) << "Failed to read IVF header";
    return false;
  }

  if (memcmp(&ivf_header[0], kFileHeaderStart, 4) != 0) {
    RTC_LOG(LS_ERROR) << "File is not in IVF format: DKIF header expected";
    return false;
  }

  std::optional<VideoCodecType> codec_type = ParseCodecType(ivf_header, 8);
  if (!codec_type) {
    return false;
  }
  codec_type_ = *codec_type;

  width_ = ByteReader<uint16_t>::ReadLittleEndian(&ivf_header[12]);
  height_ = ByteReader<uint16_t>::ReadLittleEndian(&ivf_header[14]);
  if (width_ == 0 || height_ == 0) {
    RTC_LOG(LS_ERROR) << "Invalid IVF header: width or height is 0";
    return false;
  }

  time_scale_ = ByteReader<uint32_t>::ReadLittleEndian(&ivf_header[16]);
  if (time_scale_ == 0) {
    RTC_LOG(LS_ERROR) << "Invalid IVF header: time scale can't be 0";
    return false;
  }

  num_frames_ = static_cast<size_t>(
      ByteReader<uint32_t>::ReadLittleEndian(&ivf_header[24]));
  if (num_frames_ <= 0) {
    RTC_LOG(LS_ERROR) << "Invalid IVF header: number of frames 0 or negative";
    return false;
  }

  num_read_frames_ = 0;
  next_frame_header_ = ReadNextFrameHeader();
  if (!next_frame_header_) {
    RTC_LOG(LS_ERROR) << "Failed to read 1st frame header";
    return false;
  }
  // Initialization succeed: reset error.
  has_error_ = false;

  const char* codec_name = CodecTypeToPayloadString(codec_type_);
  RTC_LOG(LS_INFO) << "Opened IVF file with codec data of type " << codec_name
                   << " at resolution " << width_ << " x " << height_
                   << ", using " << time_scale_ << "Hz clock resolution.";

  return true;
}

std::optional<EncodedImage> IvfFileReader::NextFrame() {
  if (has_error_ || !HasMoreFrames()) {
    return std::nullopt;
  }

  scoped_refptr<EncodedImageBuffer> payload = EncodedImageBuffer::Create();
  std::vector<size_t> layer_sizes;
  // next_frame_header_ have to be presented by the way how it was loaded. If it
  // is missing it means there is a bug in error handling.
  RTC_DCHECK(next_frame_header_);
  int64_t current_timestamp = next_frame_header_->timestamp;
  // The first frame from the file should be marked as Key frame.
  bool is_first_frame = num_read_frames_ == 0;
  while (next_frame_header_ &&
         current_timestamp == next_frame_header_->timestamp) {
    // Resize payload to fit next spatial layer.
    size_t current_layer_size = next_frame_header_->frame_size;
    size_t current_layer_start_pos = payload->size();
    payload->Realloc(payload->size() + current_layer_size);
    layer_sizes.push_back(current_layer_size);

    // Read next layer into payload
    size_t read = file_.Read(&payload->data()[current_layer_start_pos],
                             current_layer_size);
    if (read != current_layer_size) {
      RTC_LOG(LS_ERROR) << "Frame #" << num_read_frames_
                        << ": failed to read frame payload";
      has_error_ = true;
      return std::nullopt;
    }
    num_read_frames_++;

    current_timestamp = next_frame_header_->timestamp;
    next_frame_header_ = ReadNextFrameHeader();
  }
  if (!next_frame_header_) {
    // If EOF was reached, we need to check that all frames were met.
    if (!has_error_ && num_read_frames_ != num_frames_) {
      RTC_LOG(LS_ERROR) << "Unexpected EOF";
      has_error_ = true;
      return std::nullopt;
    }
  }

  EncodedImage image;
  image.capture_time_ms_ = current_timestamp;
  image.SetRtpTimestamp(
      static_cast<uint32_t>(current_timestamp * kRtpClockRateHz / time_scale_));
  image.SetEncodedData(payload);
  image.SetSpatialIndex(static_cast<int>(layer_sizes.size()) - 1);
  for (size_t i = 0; i < layer_sizes.size(); ++i) {
    image.SetSpatialLayerFrameSize(static_cast<int>(i), layer_sizes[i]);
  }
  if (is_first_frame) {
    image._frameType = VideoFrameType::kVideoFrameKey;
  }

  return image;
}

bool IvfFileReader::Close() {
  if (!file_.is_open())
    return false;

  file_.Close();
  return true;
}

std::optional<VideoCodecType> IvfFileReader::ParseCodecType(uint8_t* buffer,
                                                            size_t start_pos) {
  if (memcmp(&buffer[start_pos], kVp8Header, kCodecTypeBytesCount) == 0) {
    return VideoCodecType::kVideoCodecVP8;
  }
  if (memcmp(&buffer[start_pos], kVp9Header, kCodecTypeBytesCount) == 0) {
    return VideoCodecType::kVideoCodecVP9;
  }
  if (memcmp(&buffer[start_pos], kAv1Header, kCodecTypeBytesCount) == 0) {
    return VideoCodecType::kVideoCodecAV1;
  }
  if (memcmp(&buffer[start_pos], kH264Header, kCodecTypeBytesCount) == 0) {
    return VideoCodecType::kVideoCodecH264;
  }
  if (memcmp(&buffer[start_pos], kH265Header, kCodecTypeBytesCount) == 0) {
    return VideoCodecType::kVideoCodecH265;
  }
  has_error_ = true;
  RTC_LOG(LS_ERROR) << "Unknown codec type: "
                    << std::string(
                           reinterpret_cast<char const*>(&buffer[start_pos]),
                           kCodecTypeBytesCount);
  return std::nullopt;
}

std::optional<IvfFileReader::FrameHeader> IvfFileReader::ReadNextFrameHeader() {
  uint8_t ivf_frame_header[kIvfFrameHeaderSize] = {0};
  size_t read = file_.Read(&ivf_frame_header, kIvfFrameHeaderSize);
  if (read != kIvfFrameHeaderSize) {
    if (read != 0 || !file_.ReadEof()) {
      has_error_ = true;
      RTC_LOG(LS_ERROR) << "Frame #" << num_read_frames_
                        << ": failed to read IVF frame header";
    }
    return std::nullopt;
  }
  FrameHeader header;
  header.frame_size = static_cast<size_t>(
      ByteReader<uint32_t>::ReadLittleEndian(&ivf_frame_header[0]));
  header.timestamp =
      ByteReader<uint64_t>::ReadLittleEndian(&ivf_frame_header[4]);

  if (header.frame_size == 0) {
    has_error_ = true;
    RTC_LOG(LS_ERROR) << "Frame #" << num_read_frames_
                      << ": invalid frame size";
    return std::nullopt;
  }

  if (header.timestamp < 0) {
    has_error_ = true;
    RTC_LOG(LS_ERROR) << "Frame #" << num_read_frames_
                      << ": negative timestamp";
    return std::nullopt;
  }

  return header;
}

}  // namespace webrtc