1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
|
/*
* Copyright 2009 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "p2p/client/basic_port_allocator.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <optional>
#include <string>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/strings/string_view.h"
#include "api/candidate.h"
#include "api/environment/environment.h"
#include "api/environment/environment_factory.h"
#include "api/test/rtc_error_matchers.h"
#include "api/transport/enums.h"
#include "api/units/time_delta.h"
#include "p2p/base/basic_packet_socket_factory.h"
#include "p2p/base/p2p_constants.h"
#include "p2p/base/port.h"
#include "p2p/base/port_allocator.h"
#include "p2p/base/port_interface.h"
#include "p2p/base/stun_port.h"
#include "p2p/base/stun_request.h"
#include "p2p/test/nat_server.h"
#include "p2p/test/nat_socket_factory.h"
#include "p2p/test/nat_types.h"
#include "p2p/test/stun_server.h"
#include "p2p/test/test_stun_server.h"
#include "p2p/test/test_turn_server.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/fake_mdns_responder.h"
#include "rtc_base/fake_network.h"
#include "rtc_base/firewall_socket_server.h"
#include "rtc_base/gunit.h"
#include "rtc_base/ip_address.h"
#include "rtc_base/logging.h"
#include "rtc_base/net_helper.h"
#include "rtc_base/net_test_helpers.h"
#include "rtc_base/network.h"
#include "rtc_base/network_constants.h"
#include "rtc_base/socket.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/third_party/sigslot/sigslot.h"
#include "rtc_base/thread.h"
#include "rtc_base/virtual_socket_server.h"
#include "system_wrappers/include/metrics.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
#include "test/wait_until.h"
using ::testing::Contains;
using ::testing::Eq;
using ::testing::IsTrue;
using ::testing::Not;
using ::webrtc::CreateEnvironment;
using ::webrtc::Environment;
using ::webrtc::IceCandidateType;
using ::webrtc::IPAddress;
using ::webrtc::SocketAddress;
#define MAYBE_SKIP_IPV4 \
if (!::webrtc::HasIPv4Enabled()) { \
RTC_LOG(LS_INFO) << "No IPv4... skipping"; \
return; \
}
static const SocketAddress kAnyAddr("0.0.0.0", 0);
static const SocketAddress kClientAddr("11.11.11.11", 0);
static const SocketAddress kClientAddr2("22.22.22.22", 0);
static const SocketAddress kLoopbackAddr("127.0.0.1", 0);
static const SocketAddress kPrivateAddr("192.168.1.11", 0);
static const SocketAddress kPrivateAddr2("192.168.1.12", 0);
static const SocketAddress kClientIPv6Addr("2401:fa00:4:1000:be30:5bff:fee5:c3",
0);
static const SocketAddress kClientIPv6Addr2(
"2401:fa00:4:2000:be30:5bff:fee5:c3",
0);
static const SocketAddress kClientIPv6Addr3(
"2401:fa00:4:3000:be30:5bff:fee5:c3",
0);
static const SocketAddress kClientIPv6Addr4(
"2401:fa00:4:4000:be30:5bff:fee5:c3",
0);
static const SocketAddress kClientIPv6Addr5(
"2401:fa00:4:5000:be30:5bff:fee5:c3",
0);
static const SocketAddress kNatUdpAddr("77.77.77.77",
webrtc::NAT_SERVER_UDP_PORT);
static const SocketAddress kNatTcpAddr("77.77.77.77",
webrtc::NAT_SERVER_TCP_PORT);
static const SocketAddress kRemoteClientAddr("22.22.22.22", 0);
static const SocketAddress kStunAddr("99.99.99.1", webrtc::STUN_SERVER_PORT);
static const SocketAddress kTurnUdpIntAddr("99.99.99.4", 3478);
static const SocketAddress kTurnUdpIntIPv6Addr(
"2402:fb00:4:1000:be30:5bff:fee5:c3",
3479);
static const SocketAddress kTurnTcpIntAddr("99.99.99.5", 3478);
static const SocketAddress kTurnTcpIntIPv6Addr(
"2402:fb00:4:2000:be30:5bff:fee5:c3",
3479);
static const SocketAddress kTurnUdpExtAddr("99.99.99.6", 0);
// Minimum and maximum port for port range tests.
static const int kMinPort = 10000;
static const int kMaxPort = 10099;
// Based on ICE_UFRAG_LENGTH
static const char kIceUfrag0[] = "UF00";
// Based on ICE_PWD_LENGTH
static const char kIcePwd0[] = "TESTICEPWD00000000000000";
static const char kContentName[] = "test content";
static const int kDefaultAllocationTimeout = 3000;
static const char kTurnUsername[] = "test";
static const char kTurnPassword[] = "test";
// STUN timeout (with all retries) is webrtc::STUN_TOTAL_TIMEOUT.
// Add some margin of error for slow bots.
static const int kStunTimeoutMs = webrtc::STUN_TOTAL_TIMEOUT;
namespace {
void CheckStunKeepaliveIntervalOfAllReadyPorts(
const webrtc::PortAllocatorSession* allocator_session,
int expected) {
auto ready_ports = allocator_session->ReadyPorts();
for (const auto* port : ready_ports) {
if (port->Type() == IceCandidateType::kSrflx ||
(port->Type() == IceCandidateType::kHost &&
port->GetProtocol() == webrtc::PROTO_UDP)) {
EXPECT_EQ(
static_cast<const webrtc::UDPPort*>(port)->stun_keepalive_delay(),
expected);
}
}
}
} // namespace
namespace webrtc {
class BasicPortAllocatorTestBase : public ::testing::Test,
public sigslot::has_slots<> {
public:
BasicPortAllocatorTestBase()
: vss_(new VirtualSocketServer()),
fss_(new FirewallSocketServer(vss_.get())),
socket_factory_(fss_.get()),
thread_(fss_.get()),
// Note that the NAT is not used by default. ResetWithStunServerAndNat
// must be called.
nat_factory_(vss_.get(), kNatUdpAddr, kNatTcpAddr),
nat_socket_factory_(new BasicPacketSocketFactory(&nat_factory_)),
stun_server_(TestStunServer::Create(fss_.get(), kStunAddr, thread_)),
turn_server_(Thread::Current(),
fss_.get(),
kTurnUdpIntAddr,
kTurnUdpExtAddr),
network_manager_(&thread_),
candidate_allocation_done_(false) {
allocator_.emplace(env_, &network_manager_, &socket_factory_);
allocator_->SetConfiguration({kStunAddr}, {}, 0, NO_PRUNE, nullptr);
allocator_->Initialize();
allocator_->set_step_delay(kMinimumStepDelay);
metrics::Reset();
}
void AddInterface(const SocketAddress& addr) {
network_manager_.AddInterface(addr);
}
void AddInterface(const SocketAddress& addr, absl::string_view if_name) {
network_manager_.AddInterface(addr, if_name);
}
void AddInterface(const SocketAddress& addr,
absl::string_view if_name,
AdapterType type) {
network_manager_.AddInterface(addr, if_name, type);
}
// The default source address is the public address that STUN server will
// observe when the endpoint is sitting on the public internet and the local
// port is bound to the "any" address. Intended for simulating the situation
// that client binds the "any" address, and that's also the address returned
// by getsockname/GetLocalAddress, so that the client can learn the actual
// local address only from the STUN response.
void AddInterfaceAsDefaultSourceAddresss(const SocketAddress& addr) {
AddInterface(addr);
// When a binding comes from the any address, the `addr` will be used as the
// srflx address.
vss_->SetDefaultSourceAddress(addr.ipaddr());
}
void RemoveInterface(const SocketAddress& addr) {
network_manager_.RemoveInterface(addr);
}
bool SetPortRange(int min_port, int max_port) {
return allocator_->SetPortRange(min_port, max_port);
}
// Endpoint is on the public network. No STUN or TURN.
void ResetWithNoServersOrNat() {
allocator_.emplace(env_, &network_manager_, &socket_factory_);
allocator_->Initialize();
allocator_->set_step_delay(kMinimumStepDelay);
}
// Endpoint is behind a NAT, with STUN specified.
void ResetWithStunServerAndNat(const SocketAddress& stun_server) {
ResetWithStunServer(stun_server, true);
}
// Endpoint is on the public network, with STUN specified.
void ResetWithStunServerNoNat(const SocketAddress& stun_server) {
ResetWithStunServer(stun_server, false);
}
// Endpoint is on the public network, with TURN specified.
void ResetWithTurnServersNoNat(const SocketAddress& udp_turn,
const SocketAddress& tcp_turn) {
ResetWithNoServersOrNat();
AddTurnServers(udp_turn, tcp_turn);
}
RelayServerConfig CreateTurnServers(const SocketAddress& udp_turn,
const SocketAddress& tcp_turn) {
RelayServerConfig turn_server;
RelayCredentials credentials(kTurnUsername, kTurnPassword);
turn_server.credentials = credentials;
if (!udp_turn.IsNil()) {
turn_server.ports.push_back(ProtocolAddress(udp_turn, PROTO_UDP));
}
if (!tcp_turn.IsNil()) {
turn_server.ports.push_back(ProtocolAddress(tcp_turn, PROTO_TCP));
}
return turn_server;
}
void AddTurnServers(const SocketAddress& udp_turn,
const SocketAddress& tcp_turn) {
RelayServerConfig turn_server = CreateTurnServers(udp_turn, tcp_turn);
allocator_->AddTurnServerForTesting(turn_server);
}
bool CreateSession(int component) {
session_ = CreateSession("session", component);
if (!session_) {
return false;
}
return true;
}
bool CreateSession(int component, absl::string_view content_name) {
session_ = CreateSession("session", content_name, component);
if (!session_) {
return false;
}
return true;
}
std::unique_ptr<PortAllocatorSession> CreateSession(absl::string_view sid,
int component) {
return CreateSession(sid, kContentName, component);
}
std::unique_ptr<PortAllocatorSession> CreateSession(
absl::string_view sid,
absl::string_view content_name,
int component) {
return CreateSession(sid, content_name, component, kIceUfrag0, kIcePwd0);
}
std::unique_ptr<PortAllocatorSession> CreateSession(
absl::string_view sid,
absl::string_view content_name,
int component,
absl::string_view ice_ufrag,
absl::string_view ice_pwd) {
std::unique_ptr<PortAllocatorSession> session =
allocator_->CreateSession(content_name, component, ice_ufrag, ice_pwd);
session->SignalPortReady.connect(this,
&BasicPortAllocatorTestBase::OnPortReady);
session->SignalPortsPruned.connect(
this, &BasicPortAllocatorTestBase::OnPortsPruned);
session->SignalCandidatesReady.connect(
this, &BasicPortAllocatorTestBase::OnCandidatesReady);
session->SignalCandidatesRemoved.connect(
this, &BasicPortAllocatorTestBase::OnCandidatesRemoved);
session->SignalCandidatesAllocationDone.connect(
this, &BasicPortAllocatorTestBase::OnCandidatesAllocationDone);
return session;
}
// Return true if the addresses are the same, or the port is 0 in `pattern`
// (acting as a wildcard) and the IPs are the same.
// Even with a wildcard port, the port of the address should be nonzero if
// the IP is nonzero.
static bool AddressMatch(const SocketAddress& address,
const SocketAddress& pattern) {
return address.ipaddr() == pattern.ipaddr() &&
((pattern.port() == 0 &&
(address.port() != 0 || IPIsAny(address.ipaddr()))) ||
(pattern.port() != 0 && address.port() == pattern.port()));
}
// Returns the number of ports that have matching type, protocol and
// address.
static int CountPorts(const std::vector<PortInterface*>& ports,
IceCandidateType type,
ProtocolType protocol,
const SocketAddress& client_addr) {
return absl::c_count_if(
ports, [type, protocol, client_addr](PortInterface* port) {
return port->Type() == type && port->GetProtocol() == protocol &&
port->Network()->GetBestIP() == client_addr.ipaddr();
});
}
// Find a candidate and return it.
static bool FindCandidate(const std::vector<Candidate>& candidates,
IceCandidateType type,
absl::string_view proto,
const SocketAddress& addr,
Candidate* found) {
auto it =
absl::c_find_if(candidates, [type, proto, addr](const Candidate& c) {
return c.type() == type && c.protocol() == proto &&
AddressMatch(c.address(), addr);
});
if (it != candidates.end() && found) {
*found = *it;
}
return it != candidates.end();
}
// Convenience method to call FindCandidate with no return.
static bool HasCandidate(const std::vector<Candidate>& candidates,
IceCandidateType type,
absl::string_view proto,
const SocketAddress& addr) {
return FindCandidate(candidates, type, proto, addr, nullptr);
}
// Version of HasCandidate that also takes a related address.
static bool HasCandidateWithRelatedAddr(
const std::vector<Candidate>& candidates,
IceCandidateType type,
absl::string_view proto,
const SocketAddress& addr,
const SocketAddress& related_addr) {
return absl::c_any_of(
candidates, [type, proto, addr, related_addr](const Candidate& c) {
return c.type() == type && c.protocol() == proto &&
AddressMatch(c.address(), addr) &&
AddressMatch(c.related_address(), related_addr);
});
}
static bool CheckPort(const SocketAddress& addr, int min_port, int max_port) {
return (addr.port() >= min_port && addr.port() <= max_port);
}
static bool HasNetwork(const std::vector<const Network*>& networks,
const Network& to_be_found) {
auto it =
absl::c_find_if(networks, [to_be_found](const Network* network) {
return network->description() == to_be_found.description() &&
network->name() == to_be_found.name() &&
network->prefix() == to_be_found.prefix();
});
return it != networks.end();
}
void OnCandidatesAllocationDone(PortAllocatorSession* session) {
// We should only get this callback once, except in the mux test where
// we have multiple port allocation sessions.
if (session == session_.get()) {
ASSERT_FALSE(candidate_allocation_done_);
candidate_allocation_done_ = true;
}
EXPECT_TRUE(session->CandidatesAllocationDone());
}
// Check if all ports allocated have send-buffer size `expected`. If
// `expected` == -1, check if GetOptions returns SOCKET_ERROR.
void CheckSendBufferSizesOfAllPorts(int expected) {
std::vector<PortInterface*>::iterator it;
for (it = ports_.begin(); it < ports_.end(); ++it) {
int send_buffer_size;
if (expected == -1) {
EXPECT_EQ(SOCKET_ERROR,
(*it)->GetOption(Socket::OPT_SNDBUF, &send_buffer_size));
} else {
EXPECT_EQ(0, (*it)->GetOption(Socket::OPT_SNDBUF, &send_buffer_size));
ASSERT_EQ(expected, send_buffer_size);
}
}
}
VirtualSocketServer* virtual_socket_server() { return vss_.get(); }
protected:
BasicPortAllocator& allocator() { return *allocator_; }
void OnPortReady(PortAllocatorSession* ses, PortInterface* port) {
RTC_LOG(LS_INFO) << "OnPortReady: " << port->ToString();
ports_.push_back(port);
// Make sure the new port is added to ReadyPorts.
auto ready_ports = ses->ReadyPorts();
EXPECT_THAT(ready_ports, Contains(port));
}
void OnPortsPruned(PortAllocatorSession* ses,
const std::vector<PortInterface*>& pruned_ports) {
RTC_LOG(LS_INFO) << "Number of ports pruned: " << pruned_ports.size();
auto ready_ports = ses->ReadyPorts();
auto new_end = ports_.end();
for (PortInterface* port : pruned_ports) {
new_end = std::remove(ports_.begin(), new_end, port);
// Make sure the pruned port is not in ReadyPorts.
EXPECT_THAT(ready_ports, Not(Contains(port)));
}
ports_.erase(new_end, ports_.end());
}
void OnCandidatesReady(PortAllocatorSession* ses,
const std::vector<Candidate>& candidates) {
for (const Candidate& candidate : candidates) {
RTC_LOG(LS_INFO) << "OnCandidatesReady: " << candidate.ToString();
// Sanity check that the ICE component is set.
EXPECT_EQ(ICE_CANDIDATE_COMPONENT_RTP, candidate.component());
candidates_.push_back(candidate);
}
// Make sure the new candidates are added to Candidates.
auto ses_candidates = ses->ReadyCandidates();
for (const Candidate& candidate : candidates) {
EXPECT_THAT(ses_candidates, Contains(candidate));
}
}
void OnCandidatesRemoved(PortAllocatorSession* session,
const std::vector<Candidate>& removed_candidates) {
auto new_end = std::remove_if(
candidates_.begin(), candidates_.end(),
[removed_candidates](Candidate& candidate) {
for (const Candidate& removed_candidate : removed_candidates) {
if (candidate.MatchesForRemoval(removed_candidate)) {
return true;
}
}
return false;
});
candidates_.erase(new_end, candidates_.end());
}
bool HasRelayAddress(const ProtocolAddress& proto_addr) {
for (size_t i = 0; i < allocator_->turn_servers().size(); ++i) {
RelayServerConfig server_config = allocator_->turn_servers()[i];
PortList::const_iterator relay_port;
for (relay_port = server_config.ports.begin();
relay_port != server_config.ports.end(); ++relay_port) {
if (proto_addr.address == relay_port->address &&
proto_addr.proto == relay_port->proto)
return true;
}
}
return false;
}
void ResetWithStunServer(const SocketAddress& stun_server, bool with_nat) {
if (with_nat) {
nat_server_.reset(new NATServer(
NAT_OPEN_CONE, thread_, vss_.get(), kNatUdpAddr, kNatTcpAddr, thread_,
vss_.get(), SocketAddress(kNatUdpAddr.ipaddr(), 0)));
} else {
nat_socket_factory_ =
std::make_unique<BasicPacketSocketFactory>(fss_.get());
}
ServerAddresses stun_servers;
if (!stun_server.IsNil()) {
stun_servers.insert(stun_server);
}
allocator_.emplace(env_, &network_manager_, nat_socket_factory_.get());
allocator_->SetConfiguration(stun_servers, {}, 0, NO_PRUNE, nullptr);
allocator_->Initialize();
allocator_->set_step_delay(kMinimumStepDelay);
}
Environment env_ = CreateEnvironment();
std::unique_ptr<VirtualSocketServer> vss_;
std::unique_ptr<FirewallSocketServer> fss_;
BasicPacketSocketFactory socket_factory_;
AutoSocketServerThread thread_;
std::unique_ptr<NATServer> nat_server_;
NATSocketFactory nat_factory_;
std::unique_ptr<BasicPacketSocketFactory> nat_socket_factory_;
TestStunServer::StunServerPtr stun_server_;
TestTurnServer turn_server_;
FakeNetworkManager network_manager_;
std::optional<BasicPortAllocator> allocator_;
std::unique_ptr<PortAllocatorSession> session_;
std::vector<PortInterface*> ports_;
std::vector<Candidate> candidates_;
bool candidate_allocation_done_;
};
class BasicPortAllocatorTestWithRealClock : public BasicPortAllocatorTestBase {
};
class FakeClockBase {
public:
ScopedFakeClock fake_clock;
};
class BasicPortAllocatorTest : public FakeClockBase,
public BasicPortAllocatorTestBase {
public:
// This function starts the port/address gathering and check the existence of
// candidates as specified. When `expect_stun_candidate` is true,
// `stun_candidate_addr` carries the expected reflective address, which is
// also the related address for TURN candidate if it is expected. Otherwise,
// it should be ignore.
void CheckDisableAdapterEnumeration(
uint32_t total_ports,
const IPAddress& host_candidate_addr,
const IPAddress& stun_candidate_addr,
const IPAddress& relay_candidate_udp_transport_addr,
const IPAddress& relay_candidate_tcp_transport_addr) {
network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
IPAddress());
if (!session_) {
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
}
session_->set_flags(session_->flags() |
PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator().set_allow_tcp_listen(false);
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
uint32_t total_candidates = 0;
if (!host_candidate_addr.IsNil()) {
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
SocketAddress(kPrivateAddr.ipaddr(), 0)));
++total_candidates;
}
if (!stun_candidate_addr.IsNil()) {
SocketAddress related_address(host_candidate_addr, 0);
if (host_candidate_addr.IsNil()) {
related_address.SetIP(GetAnyIP(stun_candidate_addr.family()));
}
EXPECT_TRUE(HasCandidateWithRelatedAddr(
candidates_, IceCandidateType::kSrflx, "udp",
SocketAddress(stun_candidate_addr, 0), related_address));
++total_candidates;
}
if (!relay_candidate_udp_transport_addr.IsNil()) {
EXPECT_TRUE(HasCandidateWithRelatedAddr(
candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(relay_candidate_udp_transport_addr, 0),
SocketAddress(stun_candidate_addr, 0)));
++total_candidates;
}
if (!relay_candidate_tcp_transport_addr.IsNil()) {
EXPECT_TRUE(HasCandidateWithRelatedAddr(
candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(relay_candidate_tcp_transport_addr, 0),
SocketAddress(stun_candidate_addr, 0)));
++total_candidates;
}
EXPECT_EQ(total_candidates, candidates_.size());
EXPECT_EQ(total_ports, ports_.size());
}
void TestIPv6TurnPortPrunesIPv4TurnPort() {
turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
// Add two IP addresses on the same interface.
AddInterface(kClientAddr, "net1");
AddInterface(kClientIPv6Addr, "net1");
allocator_.emplace(env_, &network_manager_, &socket_factory_);
allocator_->Initialize();
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), 0,
PRUNE_BASED_ON_PRIORITY);
AddTurnServers(kTurnUdpIntIPv6Addr, SocketAddress());
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(
allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Three ports (one IPv4 STUN, one IPv6 STUN and one TURN) will be ready.
EXPECT_EQ(3U, session_->ReadyPorts().size());
EXPECT_EQ(3U, ports_.size());
EXPECT_EQ(
1, CountPorts(ports_, IceCandidateType::kHost, PROTO_UDP, kClientAddr));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kHost, PROTO_UDP,
kClientIPv6Addr));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kRelay, PROTO_UDP,
kClientIPv6Addr));
EXPECT_EQ(0, CountPorts(ports_, IceCandidateType::kRelay, PROTO_UDP,
kClientAddr));
// Now that we remove candidates when a TURN port is pruned, there will be
// exactly 3 candidates in both `candidates_` and `ready_candidates`.
EXPECT_EQ(3U, candidates_.size());
const std::vector<Candidate>& ready_candidates =
session_->ReadyCandidates();
EXPECT_EQ(3U, ready_candidates.size());
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
kClientAddr));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
}
void TestTurnPortPrunesWithUdpAndTcpPorts(PortPrunePolicy prune_policy,
bool tcp_pruned) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kClientAddr);
allocator_.emplace(env_, &network_manager_, &socket_factory_);
allocator_->Initialize();
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), 0, prune_policy);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Only 2 ports (one STUN and one TURN) are actually being used.
EXPECT_EQ(2U, session_->ReadyPorts().size());
// We have verified that each port, when it is added to `ports_`, it is
// found in `ready_ports`, and when it is pruned, it is not found in
// `ready_ports`, so we only need to verify the content in one of them.
EXPECT_EQ(2U, ports_.size());
EXPECT_EQ(
1, CountPorts(ports_, IceCandidateType::kHost, PROTO_UDP, kClientAddr));
int num_udp_ports = tcp_pruned ? 1 : 0;
EXPECT_EQ(num_udp_ports, CountPorts(ports_, IceCandidateType::kRelay,
PROTO_UDP, kClientAddr));
EXPECT_EQ(1 - num_udp_ports, CountPorts(ports_, IceCandidateType::kRelay,
PROTO_TCP, kClientAddr));
// Now that we remove candidates when a TURN port is pruned, `candidates_`
// should only contains two candidates regardless whether the TCP TURN port
// is created before or after the UDP turn port.
EXPECT_EQ(2U, candidates_.size());
// There will only be 2 candidates in `ready_candidates` because it only
// includes the candidates in the ready ports.
const std::vector<Candidate>& ready_candidates =
session_->ReadyCandidates();
EXPECT_EQ(2U, ready_candidates.size());
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
kClientAddr));
// The external candidate is always udp.
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
}
void TestEachInterfaceHasItsOwnTurnPorts() {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
turn_server_.AddInternalSocket(kTurnTcpIntIPv6Addr, PROTO_TCP);
// Add two interfaces both having IPv4 and IPv6 addresses.
AddInterface(kClientAddr, "net1", ADAPTER_TYPE_WIFI);
AddInterface(kClientIPv6Addr, "net1", ADAPTER_TYPE_WIFI);
AddInterface(kClientAddr2, "net2", ADAPTER_TYPE_CELLULAR);
AddInterface(kClientIPv6Addr2, "net2", ADAPTER_TYPE_CELLULAR);
allocator_.emplace(env_, &network_manager_, &socket_factory_);
allocator_->Initialize();
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), 0,
PRUNE_BASED_ON_PRIORITY);
// Have both UDP/TCP and IPv4/IPv6 TURN ports.
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(
allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// 10 ports (4 STUN and 1 TURN ports on each interface) will be ready to
// use.
EXPECT_EQ(10U, session_->ReadyPorts().size());
EXPECT_EQ(10U, ports_.size());
EXPECT_EQ(
1, CountPorts(ports_, IceCandidateType::kHost, PROTO_UDP, kClientAddr));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kHost, PROTO_UDP,
kClientAddr2));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kHost, PROTO_UDP,
kClientIPv6Addr));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kHost, PROTO_UDP,
kClientIPv6Addr2));
EXPECT_EQ(
1, CountPorts(ports_, IceCandidateType::kHost, PROTO_TCP, kClientAddr));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kHost, PROTO_TCP,
kClientAddr2));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kHost, PROTO_TCP,
kClientIPv6Addr));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kHost, PROTO_TCP,
kClientIPv6Addr2));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kRelay, PROTO_UDP,
kClientIPv6Addr));
EXPECT_EQ(1, CountPorts(ports_, IceCandidateType::kRelay, PROTO_UDP,
kClientIPv6Addr2));
// Now that we remove candidates when TURN ports are pruned, there will be
// exactly 10 candidates in `candidates_`.
EXPECT_EQ(10U, candidates_.size());
const std::vector<Candidate>& ready_candidates =
session_->ReadyCandidates();
EXPECT_EQ(10U, ready_candidates.size());
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
kClientAddr));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
kClientAddr2));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
kClientIPv6Addr));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
kClientIPv6Addr2));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "tcp",
kClientAddr));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "tcp",
kClientAddr2));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "tcp",
kClientIPv6Addr));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "tcp",
kClientIPv6Addr2));
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
}
};
// Tests that we can init the port allocator and create a session.
TEST_F(BasicPortAllocatorTest, TestBasic) {
EXPECT_EQ(&network_manager_, allocator().network_manager());
EXPECT_EQ(kStunAddr, *allocator().stun_servers().begin());
ASSERT_EQ(0u, allocator().turn_servers().size());
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
EXPECT_FALSE(session_->CandidatesAllocationDone());
}
// Tests that our network filtering works properly.
TEST_F(BasicPortAllocatorTest, TestIgnoreOnlyLoopbackNetworkByDefault) {
AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
ADAPTER_TYPE_ETHERNET);
AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
ADAPTER_TYPE_WIFI);
AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
ADAPTER_TYPE_CELLULAR);
AddInterface(SocketAddress(IPAddress(0x12345603U), 0), "test_vpn0",
ADAPTER_TYPE_VPN);
AddInterface(SocketAddress(IPAddress(0x12345604U), 0), "test_lo",
ADAPTER_TYPE_LOOPBACK);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP);
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(4U, candidates_.size());
for (const Candidate& candidate : candidates_) {
EXPECT_LT(candidate.address().ip(), 0x12345604U);
}
}
TEST_F(BasicPortAllocatorTest, TestIgnoreNetworksAccordingToIgnoreMask) {
AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
ADAPTER_TYPE_ETHERNET);
AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
ADAPTER_TYPE_WIFI);
AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
ADAPTER_TYPE_CELLULAR);
allocator_->SetNetworkIgnoreMask(ADAPTER_TYPE_ETHERNET |
ADAPTER_TYPE_LOOPBACK | ADAPTER_TYPE_WIFI);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP);
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(1U, candidates_.size());
EXPECT_EQ(0x12345602U, candidates_[0].address().ip());
}
// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
// both Wi-Fi and cell interfaces are available, only Wi-Fi is used.
TEST_F(BasicPortAllocatorTest,
WifiUsedInsteadOfCellWhenCostlyNetworksDisabled) {
SocketAddress wifi(IPAddress(0x12345600U), 0);
SocketAddress cell(IPAddress(0x12345601U), 0);
AddInterface(wifi, "test_wlan0", ADAPTER_TYPE_WIFI);
AddInterface(cell, "test_cell0", ADAPTER_TYPE_CELLULAR);
// Disable all but UDP candidates to make the test simpler.
allocator().set_flags(
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Should only get one Wi-Fi candidate.
EXPECT_EQ(1U, candidates_.size());
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp", wifi));
}
// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
// both "unknown" and cell interfaces are available, only the unknown are used.
// The unknown interface may be something that ultimately uses Wi-Fi, so we do
// this to be on the safe side.
TEST_F(BasicPortAllocatorTest,
UnknownInterfaceUsedInsteadOfCellWhenCostlyNetworksDisabled) {
SocketAddress cell(IPAddress(0x12345601U), 0);
SocketAddress unknown1(IPAddress(0x12345602U), 0);
SocketAddress unknown2(IPAddress(0x12345603U), 0);
AddInterface(cell, "test_cell0", ADAPTER_TYPE_CELLULAR);
AddInterface(unknown1, "test_unknown0", ADAPTER_TYPE_UNKNOWN);
AddInterface(unknown2, "test_unknown1", ADAPTER_TYPE_UNKNOWN);
// Disable all but UDP candidates to make the test simpler.
allocator().set_flags(
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Should only get two candidates, none of which is cell.
EXPECT_EQ(2U, candidates_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", unknown1));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", unknown2));
}
// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
// there are a mix of Wi-Fi, "unknown" and cell interfaces, only the Wi-Fi
// interface is used.
TEST_F(BasicPortAllocatorTest,
WifiUsedInsteadOfUnknownOrCellWhenCostlyNetworksDisabled) {
SocketAddress wifi(IPAddress(0x12345600U), 0);
SocketAddress cellular(IPAddress(0x12345601U), 0);
SocketAddress unknown1(IPAddress(0x12345602U), 0);
SocketAddress unknown2(IPAddress(0x12345603U), 0);
AddInterface(wifi, "test_wlan0", ADAPTER_TYPE_WIFI);
AddInterface(cellular, "test_cell0", ADAPTER_TYPE_CELLULAR);
AddInterface(unknown1, "test_unknown0", ADAPTER_TYPE_UNKNOWN);
AddInterface(unknown2, "test_unknown1", ADAPTER_TYPE_UNKNOWN);
// Disable all but UDP candidates to make the test simpler.
allocator().set_flags(
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Should only get one Wi-Fi candidate.
EXPECT_EQ(1U, candidates_.size());
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp", wifi));
}
// Test that if the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set, but the
// only interface available is cellular, it ends up used anyway. A costly
// connection is always better than no connection.
TEST_F(BasicPortAllocatorTest,
CellUsedWhenCostlyNetworksDisabledButThereAreNoOtherInterfaces) {
SocketAddress cellular(IPAddress(0x12345601U), 0);
AddInterface(cellular, "test_cell0", ADAPTER_TYPE_CELLULAR);
// Disable all but UDP candidates to make the test simpler.
allocator().set_flags(
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Make sure we got the cell candidate.
EXPECT_EQ(1U, candidates_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", cellular));
}
// Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
// a WiFi network with link-local IP address and a cellular network, then the
// cellular candidate will still be gathered.
TEST_F(BasicPortAllocatorTest,
CellNotRemovedWhenCostlyNetworksDisabledAndWifiIsLinkLocal) {
SocketAddress wifi_link_local("169.254.0.1", 0);
SocketAddress cellular(IPAddress(0x12345601U), 0);
AddInterface(wifi_link_local, "test_wlan0", ADAPTER_TYPE_WIFI);
AddInterface(cellular, "test_cell0", ADAPTER_TYPE_CELLULAR);
allocator().set_flags(
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Make sure we got both wifi and cell candidates.
EXPECT_EQ(2U, candidates_.size());
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
wifi_link_local));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", cellular));
}
// Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
// a WiFi network with link-local IP address, a WiFi network with a normal IP
// address and a cellular network, then the cellular candidate will not be
// gathered.
TEST_F(BasicPortAllocatorTest,
CellRemovedWhenCostlyNetworksDisabledAndBothWifisPresent) {
SocketAddress wifi(IPAddress(0x12345600U), 0);
SocketAddress wifi_link_local("169.254.0.1", 0);
SocketAddress cellular(IPAddress(0x12345601U), 0);
AddInterface(wifi, "test_wlan0", ADAPTER_TYPE_WIFI);
AddInterface(wifi_link_local, "test_wlan1", ADAPTER_TYPE_WIFI);
AddInterface(cellular, "test_cell0", ADAPTER_TYPE_CELLULAR);
allocator().set_flags(
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Make sure we got only wifi candidates.
EXPECT_EQ(2U, candidates_.size());
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp", wifi));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
wifi_link_local));
}
// Test that the adapter types of the Ethernet and the VPN can be correctly
// identified so that the Ethernet has a lower network cost than the VPN, and
// the Ethernet is not filtered out if PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is
// set.
TEST_F(BasicPortAllocatorTest,
EthernetIsNotFilteredOutWhenCostlyNetworksDisabledAndVpnPresent) {
AddInterface(kClientAddr, "eth0", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientAddr2, "tap0", ADAPTER_TYPE_VPN);
allocator().set_flags(PORTALLOCATOR_DISABLE_COSTLY_NETWORKS |
PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// The VPN tap0 network should be filtered out as a costly network, and we
// should have a UDP port and a STUN port from the Ethernet eth0.
ASSERT_EQ(2U, ports_.size());
EXPECT_EQ(ports_[0]->Network()->name(), "eth0");
EXPECT_EQ(ports_[1]->Network()->name(), "eth0");
}
// Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
// to gather candidates.
TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitEnforced) {
// Add three IPv6 network interfaces, but tell the allocator to only use two.
allocator().set_max_ipv6_networks(2);
AddInterface(kClientIPv6Addr, "eth0", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr2, "eth1", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr3, "eth2", ADAPTER_TYPE_ETHERNET);
// To simplify the test, only gather UDP host candidates.
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, candidates_.size());
// Ensure the expected two interfaces (eth0 and eth1) were used.
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr2));
}
// Ensure that allocator.max_ipv6_networks() doesn't prevent IPv4 networks from
// being used.
TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitDoesNotImpactIpv4Networks) {
// Set the "max IPv6" limit to 1, adding two IPv6 and two IPv4 networks.
allocator().set_max_ipv6_networks(1);
AddInterface(kClientIPv6Addr, "eth0", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr2, "eth1", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientAddr, "eth2", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientAddr2, "eth3", ADAPTER_TYPE_ETHERNET);
// To simplify the test, only gather UDP host candidates.
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
// Ensure that only one IPv6 interface was used, but both IPv4 interfaces
// were used.
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr2));
}
// Test that we could use loopback interface as host candidate.
TEST_F(BasicPortAllocatorTest, TestLoopbackNetworkInterface) {
AddInterface(kLoopbackAddr, "test_loopback", ADAPTER_TYPE_LOOPBACK);
allocator_->SetNetworkIgnoreMask(0);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP);
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(1U, candidates_.size());
}
// Tests that we can get all the desired addresses successfully.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithMinimumStepDelay) {
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_EQ(3U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kSrflx, "udp", kClientAddr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
}
// Test that when the same network interface is brought down and up, the
// port allocator session will restart a new allocation sequence if
// it is not stopped.
TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionNotStopped) {
std::string if_name("test_net0");
AddInterface(kClientAddr, if_name);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_EQ(3U, ports_.size());
candidate_allocation_done_ = false;
candidates_.clear();
ports_.clear();
// Disable socket creation to simulate the network interface being down. When
// no network interfaces are available, BasicPortAllocator will fall back to
// binding to the "ANY" address, so we need to make sure that fails too.
fss_->set_tcp_sockets_enabled(false);
fss_->set_udp_sockets_enabled(false);
RemoveInterface(kClientAddr);
SIMULATED_WAIT(false, 1000, fake_clock);
EXPECT_EQ(0U, candidates_.size());
ports_.clear();
candidate_allocation_done_ = false;
// When the same interfaces are added again, new candidates/ports should be
// generated.
fss_->set_tcp_sockets_enabled(true);
fss_->set_udp_sockets_enabled(true);
AddInterface(kClientAddr, if_name);
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_EQ(3U, ports_.size());
}
// Test that when the same network interface is brought down and up, the
// port allocator session will not restart a new allocation sequence if
// it is stopped.
TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionStopped) {
std::string if_name("test_net0");
AddInterface(kClientAddr, if_name);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_EQ(3U, ports_.size());
session_->StopGettingPorts();
candidates_.clear();
ports_.clear();
RemoveInterface(kClientAddr);
// Wait one (simulated) second and then verify no new candidates have
// appeared.
SIMULATED_WAIT(false, 1000, fake_clock);
EXPECT_EQ(0U, candidates_.size());
EXPECT_EQ(0U, ports_.size());
// When the same interfaces are added again, new candidates/ports should not
// be generated because the session has stopped.
AddInterface(kClientAddr, if_name);
SIMULATED_WAIT(false, 1000, fake_clock);
EXPECT_EQ(0U, candidates_.size());
EXPECT_EQ(0U, ports_.size());
}
// Similar to the above tests, but tests a situation when sockets can't be
// bound to a network interface, then after a network change event can be.
// Related bug: https://bugs.chromium.org/p/webrtc/issues/detail?id=8256
TEST_F(BasicPortAllocatorTest, CandidatesRegatheredAfterBindingFails) {
// Only test local ports to simplify test.
ResetWithNoServersOrNat();
// Provide a situation where the interface appears to be available, but
// binding the sockets fails. See bug for description of when this can
// happen.
std::string if_name("test_net0");
AddInterface(kClientAddr, if_name);
fss_->set_tcp_sockets_enabled(false);
fss_->set_udp_sockets_enabled(false);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Make sure we actually prevented candidates from being gathered (other than
// a single TCP active candidate, since that doesn't require creating a
// socket).
ASSERT_EQ(1U, candidates_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
candidate_allocation_done_ = false;
// Now simulate the interface coming up, with the newfound ability to bind
// sockets.
fss_->set_tcp_sockets_enabled(true);
fss_->set_udp_sockets_enabled(true);
AddInterface(kClientAddr, if_name);
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Should get UDP and TCP candidate.
ASSERT_EQ(2U, candidates_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
// TODO(deadbeef): This is actually the same active TCP candidate as before.
// We should extend this test to also verify that a server candidate is
// gathered.
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
}
// Verify candidates with default step delay of 1sec.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithOneSecondStepDelay) {
AddInterface(kClientAddr);
allocator_->set_step_delay(kDefaultStepDelay);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(WaitUntil([&] { return candidates_.size(); }, Eq(2U),
{.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, ports_.size());
ASSERT_THAT(WaitUntil([&] { return candidates_.size(); }, Eq(3U),
{.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, ports_.size());
ASSERT_THAT(WaitUntil([&] { return candidates_.size(); }, Eq(3U),
{.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
EXPECT_EQ(3U, ports_.size());
EXPECT_TRUE(candidate_allocation_done_);
// If we Stop gathering now, we shouldn't get a second "done" callback.
session_->StopGettingPorts();
}
TEST_F(BasicPortAllocatorTest, TestSetupVideoRtpPortsWithNormalSendBuffers) {
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP, CN_VIDEO));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
// If we Stop gathering now, we shouldn't get a second "done" callback.
session_->StopGettingPorts();
// All ports should have unset send-buffer sizes.
CheckSendBufferSizesOfAllPorts(-1);
}
// Tests that we can get callback after StopGetAllPorts when called in the
// middle of gathering.
TEST_F(BasicPortAllocatorTest, TestStopGetAllPorts) {
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(2U),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, ports_.size());
session_->StopGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
}
// Test that we restrict client ports appropriately when a port range is set.
// We check the candidates for udp/stun/tcp ports, and the from address
// for relay ports.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsPortRange) {
AddInterface(kClientAddr);
// Check that an invalid port range fails.
EXPECT_FALSE(SetPortRange(kMaxPort, kMinPort));
// Check that a null port range succeeds.
EXPECT_TRUE(SetPortRange(0, 0));
// Check that a valid port range succeeds.
EXPECT_TRUE(SetPortRange(kMinPort, kMaxPort));
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_EQ(3U, ports_.size());
int num_nonrelay_candidates = 0;
for (const Candidate& candidate : candidates_) {
// Check the port number for the UDP/STUN/TCP port objects.
if (!candidate.is_relay()) {
EXPECT_TRUE(CheckPort(candidate.address(), kMinPort, kMaxPort));
++num_nonrelay_candidates;
}
}
EXPECT_EQ(3, num_nonrelay_candidates);
}
// Test that if we have no network adapters, we bind to the ANY address and
// still get non-host candidates.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoAdapters) {
// Default config uses GTURN and no NAT, so replace that with the
// desired setup (NAT, STUN server, TURN server, UDP/TCP).
ResetWithStunServerAndNat(kStunAddr);
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(4U, ports_.size());
EXPECT_EQ(1,
CountPorts(ports_, IceCandidateType::kSrflx, PROTO_UDP, kAnyAddr));
EXPECT_EQ(1,
CountPorts(ports_, IceCandidateType::kHost, PROTO_TCP, kAnyAddr));
// Two TURN ports, using UDP/TCP for the first hop to the TURN server.
EXPECT_EQ(1,
CountPorts(ports_, IceCandidateType::kRelay, PROTO_UDP, kAnyAddr));
EXPECT_EQ(1,
CountPorts(ports_, IceCandidateType::kRelay, PROTO_TCP, kAnyAddr));
// The "any" address port should be in the signaled ready ports, but the host
// candidate for it is useless and shouldn't be signaled. So we only have
// STUN/TURN candidates.
EXPECT_EQ(3U, candidates_.size());
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kSrflx, "udp",
SocketAddress(kNatUdpAddr.ipaddr(), 0)));
// Again, two TURN candidates, using UDP/TCP for the first hop to the TURN
// server.
SocketAddress addr(kTurnUdpExtAddr.ipaddr(), 0);
EXPECT_EQ(2, absl::c_count_if(candidates_, [&](const Candidate& c) {
return c.is_relay() && c.protocol() == "udp" &&
AddressMatch(c.address(), addr);
}));
}
// Test that when enumeration is disabled, we should not have any ports when
// candidate_filter() is set to CF_RELAY and no relay is specified.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithoutNatRelayTransportOnly) {
ResetWithStunServerNoNat(kStunAddr);
allocator().SetCandidateFilter(CF_RELAY);
// Expect to see no ports and no candidates.
CheckDisableAdapterEnumeration(0U, IPAddress(), IPAddress(), IPAddress(),
IPAddress());
}
// Test that even with multiple interfaces, the result should still be a single
// default private, one STUN and one TURN candidate since we bind to any address
// (i.e. all 0s).
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationBehindNatMultipleInterfaces) {
AddInterface(kPrivateAddr);
AddInterface(kPrivateAddr2);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
// Enable IPv6 here. Since the network_manager doesn't have IPv6 default
// address set and we have no IPv6 STUN server, there should be no IPv6
// candidates.
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_ENABLE_IPV6);
// Expect to see 3 ports for IPv4: HOST/STUN, TURN/UDP and TCP ports, 2 ports
// for IPv6: HOST, and TCP. Only IPv4 candidates: a default private, STUN and
// TURN/UDP candidates.
CheckDisableAdapterEnumeration(5U, kPrivateAddr.ipaddr(),
kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
IPAddress());
}
// Test that we should get a default private, STUN, TURN/UDP and TURN/TCP
// candidates when both TURN/UDP and TURN/TCP servers are specified.
TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatWithTcp) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kPrivateAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
// Expect to see 4 ports - STUN, TURN/UDP, TURN/TCP and TCP port. A default
// private, STUN, TURN/UDP, and TURN/TCP candidates.
CheckDisableAdapterEnumeration(4U, kPrivateAddr.ipaddr(),
kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
kTurnUdpExtAddr.ipaddr());
}
// Test that when adapter enumeration is disabled, for endpoints without
// STUN/TURN specified, a default private candidate is still generated.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithoutNatOrServers) {
ResetWithNoServersOrNat();
// Expect to see 2 ports: STUN and TCP ports, one default private candidate.
CheckDisableAdapterEnumeration(2U, kPrivateAddr.ipaddr(), IPAddress(),
IPAddress(), IPAddress());
}
// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
// a NAT, there is no local candidate.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled) {
ResetWithStunServerNoNat(kStunAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
// Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
// candidate.
CheckDisableAdapterEnumeration(2U, IPAddress(), IPAddress(), IPAddress(),
IPAddress());
}
// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
// a NAT, there is no local candidate. However, this specified default route
// (kClientAddr) which was discovered when sending STUN requests, will become
// the srflx addresses.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithoutNatLocalhostCandDisabledDiffRoute) {
ResetWithStunServerNoNat(kStunAddr);
AddInterfaceAsDefaultSourceAddresss(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
// Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
// candidate.
CheckDisableAdapterEnumeration(2U, IPAddress(), kClientAddr.ipaddr(),
IPAddress(), IPAddress());
}
// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints behind a
// NAT, there is only one STUN candidate.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled) {
ResetWithStunServerAndNat(kStunAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
// Expect to see 2 ports: STUN and TCP ports, and single STUN candidate.
CheckDisableAdapterEnumeration(2U, IPAddress(), kNatUdpAddr.ipaddr(),
IPAddress(), IPAddress());
}
// Test that we disable relay over UDP, and only TCP is used when connecting to
// the relay server.
TEST_F(BasicPortAllocatorTest, TestDisableUdpTurn) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kClientAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_UDP_RELAY |
PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Expect to see 2 ports and 2 candidates - TURN/TCP and TCP ports, TCP and
// TURN/TCP candidates.
EXPECT_EQ(2U, ports_.size());
EXPECT_EQ(2U, candidates_.size());
Candidate turn_candidate;
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kRelay, "udp",
kTurnUdpExtAddr, &turn_candidate));
// The TURN candidate should use TCP to contact the TURN server.
EXPECT_EQ(TCP_PROTOCOL_NAME, turn_candidate.relay_protocol());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
}
// Test that we can get OnCandidatesAllocationDone callback when all the ports
// are disabled.
TEST_F(BasicPortAllocatorTest, TestDisableAllPorts) {
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP);
session_->StartGettingPorts();
EXPECT_THAT(WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(0U, candidates_.size());
}
// Test that we don't crash or malfunction if we can't create UDP sockets.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSockets) {
AddInterface(kClientAddr);
fss_->set_udp_sockets_enabled(false);
ASSERT_TRUE(CreateSession(1));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(1U, candidates_.size());
EXPECT_EQ(1U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
}
// Test that we don't crash or malfunction if we can't create UDP sockets or
// listen on TCP sockets. We still give out a local TCP address, since
// apparently this is needed for the remote side to accept our connection.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSocketsNoTcpListen) {
AddInterface(kClientAddr);
fss_->set_udp_sockets_enabled(false);
fss_->set_tcp_listen_enabled(false);
ASSERT_TRUE(CreateSession(1));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(1U, candidates_.size());
EXPECT_EQ(1U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
}
// Test that we don't crash or malfunction if we can't create any sockets.
// TODO(deadbeef): Find a way to exit early here.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoSockets) {
AddInterface(kClientAddr);
fss_->set_tcp_sockets_enabled(false);
fss_->set_udp_sockets_enabled(false);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
SIMULATED_WAIT(!candidates_.empty(), 2000, fake_clock);
// TODO(deadbeef): Check candidate_allocation_done signal.
// In case of Relay, ports creation will succeed but sockets will fail.
// There is no error reporting from RelayEntry to handle this failure.
}
// Testing STUN timeout.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpAllowed) {
fss_->AddRule(false, FP_UDP, FD_ANY, kClientAddr);
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(2U),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
// We wait at least for a full STUN timeout, which
// webrtc::STUN_TOTAL_TIMEOUT seconds.
EXPECT_THAT(WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(STUN_TOTAL_TIMEOUT),
.clock = &fake_clock}),
IsRtcOk());
// No additional (STUN) candidates.
EXPECT_EQ(2U, candidates_.size());
}
TEST_F(BasicPortAllocatorTest, TestCandidatePriorityOfMultipleInterfaces) {
AddInterface(kClientAddr);
AddInterface(kClientAddr2);
// Allocating only host UDP ports. This is done purely for testing
// convenience.
allocator().set_flags(PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
ASSERT_EQ(2U, candidates_.size());
EXPECT_EQ(2U, ports_.size());
// Candidates priorities should be different.
EXPECT_NE(candidates_[0].priority(), candidates_[1].priority());
}
// Test to verify ICE restart process.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsRestarts) {
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_EQ(3U, ports_.size());
// TODO(deadbeef): Extend this to verify ICE restart.
}
// Test that the allocator session uses the candidate filter it's created with,
// rather than the filter of its parent allocator.
// The filter of the allocator should only affect the next gathering phase,
// according to JSEP, which means the *next* allocator session returned.
TEST_F(BasicPortAllocatorTest, TestSessionUsesOwnCandidateFilter) {
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
// Set candidate filter *after* creating the session. Should have no effect.
allocator().SetCandidateFilter(CF_RELAY);
session_->StartGettingPorts();
// 7 candidates and 4 ports is what we would normally get (see the
// TestGetAllPorts* tests).
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_EQ(3U, ports_.size());
}
// Test ICE candidate filter mechanism with options Relay/Host/Reflexive.
// This test also verifies that when the allocator is only allowed to use
// relay (i.e. IceTransportsType is relay), the raddr is an empty
// address with the correct family. This is to prevent any local
// reflective address leakage in the sdp line.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithRelayOnly) {
AddInterface(kClientAddr);
// GTURN is not configured here.
ResetWithTurnServersNoNat(kTurnUdpIntAddr, SocketAddress());
allocator().SetCandidateFilter(CF_RELAY);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
EXPECT_EQ(1U, candidates_.size());
EXPECT_EQ(1U, ports_.size()); // Only Relay port will be in ready state.
EXPECT_TRUE(candidates_[0].is_relay());
EXPECT_EQ(candidates_[0].related_address(),
EmptySocketAddressWithFamily(candidates_[0].address().family()));
}
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithHostOnly) {
AddInterface(kClientAddr);
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator().SetCandidateFilter(CF_HOST);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, candidates_.size()); // Host UDP/TCP candidates only.
EXPECT_EQ(2U, ports_.size()); // UDP/TCP ports only.
for (const Candidate& candidate : candidates_) {
EXPECT_TRUE(candidate.is_local());
}
}
// Host is behind the NAT.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnly) {
AddInterface(kPrivateAddr);
ResetWithStunServerAndNat(kStunAddr);
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator().SetCandidateFilter(CF_REFLEXIVE);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Host is behind NAT, no private address will be exposed. Hence only UDP
// port with STUN candidate will be sent outside.
EXPECT_EQ(1U, candidates_.size()); // Only STUN candidate.
EXPECT_EQ(1U, ports_.size()); // Only UDP port will be in ready state.
EXPECT_TRUE(candidates_[0].is_stun());
EXPECT_EQ(candidates_[0].related_address(),
EmptySocketAddressWithFamily(candidates_[0].address().family()));
}
// Host is not behind the NAT.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnlyAndNoNAT) {
AddInterface(kClientAddr);
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator().SetCandidateFilter(CF_REFLEXIVE);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Host has a public address, both UDP and TCP candidates will be exposed.
EXPECT_EQ(2U, candidates_.size()); // Local UDP + TCP candidate.
EXPECT_EQ(2U, ports_.size()); // UDP and TCP ports will be in ready state.
for (const Candidate& candidate : candidates_) {
EXPECT_TRUE(candidate.is_local());
}
}
// Test that we get the same ufrag and pwd for all candidates.
TEST_F(BasicPortAllocatorTest, TestEnableSharedUfrag) {
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kSrflx, "udp", kClientAddr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
EXPECT_EQ(3U, ports_.size());
for (const Candidate& candidate : candidates_) {
EXPECT_EQ(kIceUfrag0, candidate.username());
EXPECT_EQ(kIcePwd0, candidate.password());
}
}
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp and stun. Also verify there is only one candidate
// (local) if stun candidate is same as local candidate, which will be the case
// in a public network like the below test.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNat) {
AddInterface(kClientAddr);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(2U),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
}
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp and stun. In this test we should expect both stun and
// local candidates as client behind a nat.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNat) {
AddInterface(kClientAddr);
ResetWithStunServerAndNat(kStunAddr);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(3U),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
ASSERT_EQ(2U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kSrflx, "udp",
SocketAddress(kNatUdpAddr.ipaddr(), 0)));
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
}
// Test TURN port in shared socket mode with UDP and TCP TURN server addresses.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNatUsingTurn) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kClientAddr);
allocator_.emplace(env_, &network_manager_, &socket_factory_);
allocator_->Initialize();
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
ASSERT_EQ(3U, candidates_.size());
ASSERT_EQ(3U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
}
// Test that if the turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN
// port will not be used if UDP TurnPort is used, given that TCP TURN port
// becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst) {
// UDP has longer delay than TCP so that TCP TURN port becomes ready first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
TestTurnPortPrunesWithUdpAndTcpPorts(PRUNE_BASED_ON_PRIORITY,
true /* tcp_pruned */);
}
// Test that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN port
// will not be used if UDP TurnPort is used, given that UDP TURN port becomes
// ready first.
TEST_F(BasicPortAllocatorTest,
TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst) {
// UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
TestTurnPortPrunesWithUdpAndTcpPorts(PRUNE_BASED_ON_PRIORITY,
true /* tcp_pruned */);
}
// Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
// will be kept regardless of the priority.
TEST_F(BasicPortAllocatorTest,
TestUdpTurnPortPrunesTcpTurnPortIfUdpReadyFirst) {
// UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
TestTurnPortPrunesWithUdpAndTcpPorts(KEEP_FIRST_READY, true /* tcp_pruned */);
}
// Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
// will be kept regardless of the priority.
TEST_F(BasicPortAllocatorTest,
TestTcpTurnPortPrunesUdpTurnPortIfTcpReadyFirst) {
// UDP has longer delay than TCP so that TCP TURN port becomes ready first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
TestTurnPortPrunesWithUdpAndTcpPorts(KEEP_FIRST_READY,
false /* tcp_pruned */);
}
// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
// TurnPort will not be used if IPv6 TurnPort is used, given that IPv4 TURN port
// becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst) {
// IPv6 has longer delay than IPv4, so that IPv4 TURN port becomes ready
// first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 200);
TestIPv6TurnPortPrunesIPv4TurnPort();
}
// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
// TurnPort will not be used if IPv6 TurnPort is used, given that IPv6 TURN port
// becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst) {
// IPv6 has longer delay than IPv4, so that IPv6 TURN port becomes ready
// first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 100);
TestIPv6TurnPortPrunesIPv4TurnPort();
}
// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
// interface will has its own set of TurnPorts based on their priorities, in the
// default case where no transit delay is set.
TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsNoDelay) {
TestEachInterfaceHasItsOwnTurnPorts();
}
// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
// interface will has its own set of TurnPorts based on their priorities, given
// that IPv4/TCP TURN port becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst) {
// IPv6/UDP have longer delay than IPv4/TCP, so that IPv4/TCP TURN port
// becomes ready last.
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 10);
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntIPv6Addr, 20);
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 300);
TestEachInterfaceHasItsOwnTurnPorts();
}
// Testing DNS resolve for the TURN server, this will test AllocationSequence
// handling the unresolved address signal from TurnPort.
// TODO(pthatcher): Make this test work with SIMULATED_WAIT. It
// appears that it doesn't currently because of the DNS look up not
// using the fake clock.
TEST_F(BasicPortAllocatorTestWithRealClock,
TestSharedSocketWithServerAddressResolve) {
// This test relies on a real query for "localhost", so it won't work on an
// IPv6-only machine.
MAYBE_SKIP_IPV4;
turn_server_.AddInternalSocket(SocketAddress("127.0.0.1", 3478), PROTO_UDP);
AddInterface(kClientAddr);
allocator_.emplace(env_, &network_manager_, &socket_factory_);
allocator_->Initialize();
RelayServerConfig turn_server;
RelayCredentials credentials(kTurnUsername, kTurnPassword);
turn_server.credentials = credentials;
turn_server.ports.push_back(
ProtocolAddress(SocketAddress("localhost", 3478), PROTO_UDP));
allocator_->AddTurnServerForTesting(turn_server);
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return ports_.size(); }, Eq(2U),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout)}),
IsRtcOk());
}
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp/stun/turn. In this test we should expect all local,
// stun and turn candidates.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurn) {
AddInterface(kClientAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
ASSERT_EQ(2U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kSrflx, "udp",
SocketAddress(kNatUdpAddr.ipaddr(), 0)));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Local port will be created first and then TURN port.
// TODO(deadbeef): This isn't something the BasicPortAllocator API contract
// guarantees...
EXPECT_EQ(2U, ports_[0]->Candidates().size());
EXPECT_EQ(1U, ports_[1]->Candidates().size());
}
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled and the TURN
// server is also used as the STUN server, we should get 'local', 'stun', and
// 'relay' candidates.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAsStun) {
AddInterface(kClientAddr);
// Use an empty SocketAddress to add a NAT without STUN server.
ResetWithStunServerAndNat(SocketAddress());
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
// Must set the step delay to 0 to make sure the relay allocation phase is
// started before the STUN candidates are obtained, so that the STUN binding
// response is processed when both StunPort and TurnPort exist to reproduce
// webrtc issue 3537.
allocator_->set_step_delay(0);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
Candidate stun_candidate;
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kSrflx, "udp",
SocketAddress(kNatUdpAddr.ipaddr(), 0),
&stun_candidate));
EXPECT_TRUE(HasCandidateWithRelatedAddr(
candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0), stun_candidate.address()));
// Local port will be created first and then TURN port.
// TODO(deadbeef): This isn't something the BasicPortAllocator API contract
// guarantees...
EXPECT_EQ(2U, ports_[0]->Candidates().size());
EXPECT_EQ(1U, ports_[1]->Candidates().size());
}
// Test that when only a TCP TURN server is available, we do NOT use it as
// a UDP STUN server, as this could leak our IP address. Thus we should only
// expect two ports, a UDPPort and TurnPort.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnTcpOnly) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kClientAddr);
ResetWithStunServerAndNat(SocketAddress());
AddTurnServers(SocketAddress(), kTurnTcpIntAddr);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, candidates_.size());
ASSERT_EQ(2U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
EXPECT_EQ(1U, ports_[0]->Candidates().size());
EXPECT_EQ(1U, ports_[1]->Candidates().size());
}
// Test that even when PORTALLOCATOR_ENABLE_SHARED_SOCKET is NOT enabled, the
// TURN server is used as the STUN server and we get 'local', 'stun', and
// 'relay' candidates.
// TODO(deadbeef): Remove this test when support for non-shared socket mode
// is removed.
TEST_F(BasicPortAllocatorTest, TestNonSharedSocketWithNatUsingTurnAsStun) {
AddInterface(kClientAddr);
// Use an empty SocketAddress to add a NAT without STUN server.
ResetWithStunServerAndNat(SocketAddress());
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
allocator_->set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
ASSERT_EQ(3U, ports_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
Candidate stun_candidate;
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kSrflx, "udp",
SocketAddress(kNatUdpAddr.ipaddr(), 0),
&stun_candidate));
Candidate turn_candidate;
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
&turn_candidate));
// Not using shared socket, so the STUN request's server reflexive address
// should be different than the TURN request's server reflexive address.
EXPECT_NE(turn_candidate.related_address(), stun_candidate.address());
EXPECT_EQ(1U, ports_[0]->Candidates().size());
EXPECT_EQ(1U, ports_[1]->Candidates().size());
EXPECT_EQ(1U, ports_[2]->Candidates().size());
}
// Test that even when both a STUN and TURN server are configured, the TURN
// server is used as a STUN server and we get a 'stun' candidate.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAndStun) {
AddInterface(kClientAddr);
// Configure with STUN server but destroy it, so we can ensure that it's
// the TURN server actually being used as a STUN server.
ResetWithStunServerAndNat(kStunAddr);
stun_server_.reset();
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(3U),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
Candidate stun_candidate;
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kSrflx, "udp",
SocketAddress(kNatUdpAddr.ipaddr(), 0),
&stun_candidate));
EXPECT_TRUE(HasCandidateWithRelatedAddr(
candidates_, IceCandidateType::kRelay, "udp",
SocketAddress(kTurnUdpExtAddr.ipaddr(), 0), stun_candidate.address()));
// Don't bother waiting for STUN timeout, since we already verified
// that we got a STUN candidate from the TURN server.
}
// This test verifies when PORTALLOCATOR_ENABLE_SHARED_SOCKET flag is enabled
// and fail to generate STUN candidate, local UDP candidate is generated
// properly.
TEST_F(BasicPortAllocatorTest, TestSharedSocketNoUdpAllowed) {
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
fss_->AddRule(false, FP_UDP, FD_ANY, kClientAddr);
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return ports_.size(); }, Eq(1U),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(1U, candidates_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
// STUN timeout is 9.5sec. We need to wait to get candidate done signal.
EXPECT_THAT(WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kStunTimeoutMs),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(1U, candidates_.size());
}
// Test that when the NetworkManager doesn't have permission to enumerate
// adapters, the PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION is specified
// automatically.
TEST_F(BasicPortAllocatorTest, TestNetworkPermissionBlocked) {
network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
IPAddress());
network_manager_.set_enumeration_permission(
NetworkManager::ENUMERATION_BLOCKED);
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
EXPECT_EQ(0U,
allocator_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
EXPECT_EQ(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return ports_.size(); }, Eq(1U),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(1U, candidates_.size());
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kPrivateAddr));
EXPECT_NE(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
}
// This test verifies allocator can use IPv6 addresses along with IPv4.
TEST_F(BasicPortAllocatorTest, TestEnableIPv6Addresses) {
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_ENABLE_IPV6 |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
AddInterface(kClientIPv6Addr);
AddInterface(kClientAddr);
allocator_->set_step_delay(kMinimumStepDelay);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(4U, ports_.size());
EXPECT_EQ(4U, candidates_.size());
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "tcp",
kClientIPv6Addr));
EXPECT_TRUE(
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
}
TEST_F(BasicPortAllocatorTest, TestStopGettingPorts) {
AddInterface(kClientAddr);
allocator_->set_step_delay(kDefaultStepDelay);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(WaitUntil([&] { return candidates_.size(); }, Eq(2U),
{.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, ports_.size());
session_->StopGettingPorts();
EXPECT_THAT(WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.clock = &fake_clock}),
IsRtcOk());
// After stopping getting ports, adding a new interface will not start
// getting ports again.
allocator_->set_step_delay(kMinimumStepDelay);
candidates_.clear();
ports_.clear();
candidate_allocation_done_ = false;
network_manager_.AddInterface(kClientAddr2);
SIMULATED_WAIT(false, 1000, fake_clock);
EXPECT_EQ(0U, candidates_.size());
EXPECT_EQ(0U, ports_.size());
}
TEST_F(BasicPortAllocatorTest, TestClearGettingPorts) {
AddInterface(kClientAddr);
allocator_->set_step_delay(kDefaultStepDelay);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(WaitUntil([&] { return candidates_.size(); }, Eq(2U),
{.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, ports_.size());
session_->ClearGettingPorts();
EXPECT_THAT(WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.clock = &fake_clock}),
IsRtcOk());
// After clearing getting ports, adding a new interface will start getting
// ports again.
allocator_->set_step_delay(kMinimumStepDelay);
candidates_.clear();
ports_.clear();
candidate_allocation_done_ = false;
network_manager_.AddInterface(kClientAddr2);
ASSERT_THAT(WaitUntil([&] { return candidates_.size(); }, Eq(2U),
{.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, ports_.size());
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
}
// Test that the ports and candidates are updated with new ufrag/pwd/etc. when
// a pooled session is taken out of the pool.
TEST_F(BasicPortAllocatorTest, TestTransportInformationUpdated) {
AddInterface(kClientAddr);
int pool_size = 1;
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, NO_PRUNE);
const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
ASSERT_NE(nullptr, peeked_session);
EXPECT_THAT(
WaitUntil([&] { return peeked_session->CandidatesAllocationDone(); },
IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
// Expect that when TakePooledSession is called,
// UpdateTransportInformationInternal will be called and the
// BasicPortAllocatorSession will update the ufrag/pwd of ports and
// candidates.
session_ =
allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
ASSERT_NE(nullptr, session_.get());
auto ready_ports = session_->ReadyPorts();
auto candidates = session_->ReadyCandidates();
EXPECT_FALSE(ready_ports.empty());
EXPECT_FALSE(candidates.empty());
for (const PortInterface* port_interface : ready_ports) {
const Port* port = static_cast<const Port*>(port_interface);
EXPECT_EQ(kContentName, port->content_name());
EXPECT_EQ(1, port->component());
EXPECT_EQ(kIceUfrag0, port->username_fragment());
EXPECT_EQ(kIcePwd0, port->password());
}
for (const Candidate& candidate : candidates) {
EXPECT_EQ(1, candidate.component());
EXPECT_EQ(kIceUfrag0, candidate.username());
EXPECT_EQ(kIcePwd0, candidate.password());
}
}
// Test that a new candidate filter takes effect even on already-gathered
// candidates.
TEST_F(BasicPortAllocatorTest, TestSetCandidateFilterAfterCandidatesGathered) {
AddInterface(kClientAddr);
int pool_size = 1;
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, NO_PRUNE);
const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
ASSERT_NE(nullptr, peeked_session);
EXPECT_THAT(
WaitUntil([&] { return peeked_session->CandidatesAllocationDone(); },
IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
size_t initial_candidates_size = peeked_session->ReadyCandidates().size();
size_t initial_ports_size = peeked_session->ReadyPorts().size();
allocator_->SetCandidateFilter(CF_RELAY);
// Assume that when TakePooledSession is called, the candidate filter will be
// applied to the pooled session. This is tested by PortAllocatorTest.
session_ =
allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
ASSERT_NE(nullptr, session_.get());
auto candidates = session_->ReadyCandidates();
auto ports = session_->ReadyPorts();
// Sanity check that the number of candidates and ports decreased.
EXPECT_GT(initial_candidates_size, candidates.size());
EXPECT_GT(initial_ports_size, ports.size());
for (const PortInterface* port : ports) {
// Expect only relay ports.
EXPECT_EQ(IceCandidateType::kRelay, port->Type());
}
for (const Candidate& candidate : candidates) {
// Expect only relay candidates now that the filter is applied.
EXPECT_TRUE(candidate.is_relay());
// Expect that the raddr is emptied due to the CF_RELAY filter.
EXPECT_EQ(candidate.related_address(),
EmptySocketAddressWithFamily(candidate.address().family()));
}
}
// Test that candidates that do not match a previous candidate filter can be
// surfaced if they match the new one after setting the filter value.
TEST_F(BasicPortAllocatorTest,
SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes) {
// We would still surface a host candidate if the IP is public, even though it
// is disabled by the candidate filter. See
// BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
// that the srflx candidate is not equivalent to the host candidate.
AddInterface(kPrivateAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
allocator_->SetCandidateFilter(CF_NONE);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(candidates_.empty());
EXPECT_TRUE(ports_.empty());
// Surface the relay candidate previously gathered but not signaled.
session_->SetCandidateFilter(CF_RELAY);
ASSERT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(1u),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(candidates_.back().is_relay());
EXPECT_EQ(1u, ports_.size());
// Surface the srflx candidate previously gathered but not signaled.
session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
ASSERT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(2u),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(candidates_.back().is_stun());
EXPECT_EQ(2u, ports_.size());
// Surface the srflx candidate previously gathered but not signaled.
session_->SetCandidateFilter(CF_ALL);
ASSERT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(3u),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(candidates_.back().is_local());
EXPECT_EQ(2u, ports_.size());
}
// This is a similar test as
// SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes, and we
// test the transitions for which the new filter value is not a super set of the
// previous value.
TEST_F(
BasicPortAllocatorTest,
SurfaceNewCandidatesAfterSetCandidateFilterToAllowDifferentCandidateTypes) {
// We would still surface a host candidate if the IP is public, even though it
// is disabled by the candidate filter. See
// BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
// that the srflx candidate is not equivalent to the host candidate.
AddInterface(kPrivateAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
allocator_->SetCandidateFilter(CF_NONE);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(candidates_.empty());
EXPECT_TRUE(ports_.empty());
// Surface the relay candidate previously gathered but not signaled.
session_->SetCandidateFilter(CF_RELAY);
EXPECT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(1u),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(candidates_.back().is_relay());
EXPECT_EQ(1u, ports_.size());
// Surface the srflx candidate previously gathered but not signaled.
session_->SetCandidateFilter(CF_REFLEXIVE);
EXPECT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(2u),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(candidates_.back().is_stun());
EXPECT_EQ(2u, ports_.size());
// Surface the host candidate previously gathered but not signaled.
session_->SetCandidateFilter(CF_HOST);
EXPECT_THAT(
WaitUntil([&] { return candidates_.size(); }, Eq(3u),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_TRUE(candidates_.back().is_local());
// We use a shared socket and webrtc::UDPPort handles the srflx candidate.
EXPECT_EQ(2u, ports_.size());
}
// Test that after an allocation session has stopped getting ports, changing the
// candidate filter to allow new types of gathered candidates does not surface
// any candidate.
TEST_F(BasicPortAllocatorTest,
NoCandidateSurfacedWhenUpdatingCandidateFilterIfSessionStopped) {
AddInterface(kPrivateAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, SocketAddress());
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
allocator_->SetCandidateFilter(CF_NONE);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
auto test_invariants = [this]() {
EXPECT_TRUE(candidates_.empty());
EXPECT_TRUE(ports_.empty());
};
test_invariants();
session_->StopGettingPorts();
session_->SetCandidateFilter(CF_RELAY);
SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
test_invariants();
session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
test_invariants();
session_->SetCandidateFilter(CF_ALL);
SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
test_invariants();
}
TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPorts) {
const int pool_size = 1;
const int expected_stun_keepalive_interval = 123;
AddInterface(kClientAddr);
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, NO_PRUNE,
nullptr, expected_stun_keepalive_interval);
auto* pooled_session = allocator_->GetPooledSession();
ASSERT_NE(nullptr, pooled_session);
EXPECT_THAT(
WaitUntil([&] { return pooled_session->CandidatesAllocationDone(); },
IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
expected_stun_keepalive_interval);
}
TEST_F(BasicPortAllocatorTest,
ChangeStunKeepaliveIntervalForPortsAfterInitialConfig) {
const int pool_size = 1;
AddInterface(kClientAddr);
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, NO_PRUNE,
nullptr, 123 /* stun keepalive interval */);
auto* pooled_session = allocator_->GetPooledSession();
ASSERT_NE(nullptr, pooled_session);
EXPECT_THAT(
WaitUntil([&] { return pooled_session->CandidatesAllocationDone(); },
IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
const int expected_stun_keepalive_interval = 321;
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, NO_PRUNE,
nullptr, expected_stun_keepalive_interval);
CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
expected_stun_keepalive_interval);
}
TEST_F(BasicPortAllocatorTest,
SetStunKeepaliveIntervalForPortsWithSharedSocket) {
const int pool_size = 1;
const int expected_stun_keepalive_interval = 123;
AddInterface(kClientAddr);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, NO_PRUNE,
nullptr, expected_stun_keepalive_interval);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
expected_stun_keepalive_interval);
}
TEST_F(BasicPortAllocatorTest,
SetStunKeepaliveIntervalForPortsWithoutSharedSocket) {
const int pool_size = 1;
const int expected_stun_keepalive_interval = 123;
AddInterface(kClientAddr);
allocator_->set_flags(allocator().flags() &
~(PORTALLOCATOR_ENABLE_SHARED_SOCKET));
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, NO_PRUNE,
nullptr, expected_stun_keepalive_interval);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
expected_stun_keepalive_interval);
}
// Test that when an mDNS responder is present, the local address of a host
// candidate is concealed by an mDNS hostname and the related address of a srflx
// candidate is set to 0.0.0.0 or ::0.
TEST_F(BasicPortAllocatorTest, HostCandidateAddressIsReplacedByHostname) {
// Default config uses GTURN and no NAT, so replace that with the
// desired setup (NAT, STUN server, TURN server, UDP/TCP).
ResetWithStunServerAndNat(kStunAddr);
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
ASSERT_EQ(&network_manager_, allocator().network_manager());
network_manager_.set_mdns_responder(
std::make_unique<FakeMdnsResponder>(Thread::Current()));
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(5u, candidates_.size());
int num_host_udp_candidates = 0;
int num_host_tcp_candidates = 0;
int num_srflx_candidates = 0;
int num_relay_candidates = 0;
for (const auto& candidate : candidates_) {
const auto& raddr = candidate.related_address();
if (candidate.is_local()) {
EXPECT_FALSE(candidate.address().hostname().empty());
EXPECT_TRUE(raddr.IsNil());
if (candidate.protocol() == UDP_PROTOCOL_NAME) {
++num_host_udp_candidates;
} else {
++num_host_tcp_candidates;
}
} else if (candidate.is_stun()) {
// For a srflx candidate, the related address should be set to 0.0.0.0 or
// ::0
EXPECT_TRUE(IPIsAny(raddr.ipaddr()));
EXPECT_EQ(raddr.port(), 0);
++num_srflx_candidates;
} else if (candidate.is_relay()) {
EXPECT_EQ(kNatUdpAddr.ipaddr(), raddr.ipaddr());
EXPECT_EQ(kNatUdpAddr.family(), raddr.family());
++num_relay_candidates;
} else {
// prflx candidates are not expected
FAIL();
}
}
EXPECT_EQ(1, num_host_udp_candidates);
EXPECT_EQ(1, num_host_tcp_candidates);
EXPECT_EQ(1, num_srflx_candidates);
EXPECT_EQ(2, num_relay_candidates);
}
TEST_F(BasicPortAllocatorTest, TestUseTurnServerAsStunSever) {
ServerAddresses stun_servers;
stun_servers.insert(kStunAddr);
PortConfiguration port_config(stun_servers, "", "");
RelayServerConfig turn_servers =
CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
port_config.AddRelay(turn_servers);
EXPECT_EQ(2U, port_config.StunServers().size());
}
TEST_F(BasicPortAllocatorTest, TestDoNotUseTurnServerAsStunSever) {
test::ScopedKeyValueConfig field_trials(
"WebRTC-UseTurnServerAsStunServer/Disabled/");
ServerAddresses stun_servers;
stun_servers.insert(kStunAddr);
PortConfiguration port_config(stun_servers, "" /* user_name */,
"" /* password */, &field_trials);
RelayServerConfig turn_servers =
CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
port_config.AddRelay(turn_servers);
EXPECT_EQ(1U, port_config.StunServers().size());
}
// Test that candidates from different servers get assigned a unique local
// preference (the middle 16 bits of the priority)
TEST_F(BasicPortAllocatorTest, AssignsUniqueLocalPreferencetoRelayCandidates) {
allocator_->SetCandidateFilter(CF_RELAY);
allocator_->AddTurnServerForTesting(
CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
allocator_->AddTurnServerForTesting(
CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
allocator_->AddTurnServerForTesting(
CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
AddInterface(kClientAddr);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3u, candidates_.size());
EXPECT_GT((candidates_[0].priority() >> 8) & 0xFFFF,
(candidates_[1].priority() >> 8) & 0xFFFF);
EXPECT_GT((candidates_[1].priority() >> 8) & 0xFFFF,
(candidates_[2].priority() >> 8) & 0xFFFF);
}
// Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
// to gather candidates.
TEST_F(BasicPortAllocatorTest, TwoIPv6AreSelectedBecauseOfMaxIpv6Limit) {
Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64,
ADAPTER_TYPE_WIFI);
Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64,
ADAPTER_TYPE_ETHERNET);
Network wifi2("wifi2", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64,
ADAPTER_TYPE_WIFI);
std::vector<const Network*> networks = {&wifi1, ðe1, &wifi2};
// Ensure that only 2 interfaces were selected.
EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
networks, /*max_ipv6_networks=*/2)
.size());
}
// Test that if the number of available IPv6 networks is less than
// allocator.max_ipv6_networks(), all IPv6 networks will be selected.
TEST_F(BasicPortAllocatorTest, AllIPv6AreSelected) {
Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64,
ADAPTER_TYPE_WIFI);
Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64,
ADAPTER_TYPE_ETHERNET);
std::vector<const Network*> networks = {&wifi1, ðe1};
// Ensure that all 2 interfaces were selected.
EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
networks, /*max_ipv6_networks=*/3)
.size());
}
// If there are some IPv6 networks with different types, diversify IPv6
// networks.
TEST_F(BasicPortAllocatorTest, TwoIPv6WifiAreSelectedIfThereAreTwo) {
Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64,
ADAPTER_TYPE_WIFI);
Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64,
ADAPTER_TYPE_ETHERNET);
Network ethe2("ethe2", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64,
ADAPTER_TYPE_ETHERNET);
Network unknown1("unknown1", "Test NetworkAdapter 4",
kClientIPv6Addr2.ipaddr(), 64, ADAPTER_TYPE_UNKNOWN);
Network cell1("cell1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(), 64,
ADAPTER_TYPE_CELLULAR_4G);
std::vector<const Network*> networks = {&wifi1, ðe1, ðe2, &unknown1,
&cell1};
networks = BasicPortAllocatorSession::SelectIPv6Networks(
networks, /*max_ipv6_networks=*/4);
EXPECT_EQ(4U, networks.size());
// Ensure the expected 4 interfaces (wifi1, ethe1, cell1, unknown1) were
// selected.
EXPECT_TRUE(HasNetwork(networks, wifi1));
EXPECT_TRUE(HasNetwork(networks, ethe1));
EXPECT_TRUE(HasNetwork(networks, cell1));
EXPECT_TRUE(HasNetwork(networks, unknown1));
}
// If there are some IPv6 networks with the same type, select them because there
// is no other option.
TEST_F(BasicPortAllocatorTest, IPv6WithSameTypeAreSelectedIfNoOtherOption) {
// Add 5 cellular interfaces
Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64,
ADAPTER_TYPE_CELLULAR_2G);
Network cell2("cell2", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64,
ADAPTER_TYPE_CELLULAR_3G);
Network cell3("cell3", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64,
ADAPTER_TYPE_CELLULAR_4G);
Network cell4("cell4", "Test NetworkAdapter 4", kClientIPv6Addr2.ipaddr(), 64,
ADAPTER_TYPE_CELLULAR_5G);
Network cell5("cell5", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(), 64,
ADAPTER_TYPE_CELLULAR_3G);
std::vector<const Network*> networks = {&cell1, &cell2, &cell3, &cell4,
&cell5};
// Ensure that 4 interfaces were selected.
EXPECT_EQ(4U, BasicPortAllocatorSession::SelectIPv6Networks(
networks, /*max_ipv6_networks=*/4)
.size());
}
TEST_F(BasicPortAllocatorTest, IPv6EthernetHasHigherPriorityThanWifi) {
Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64,
ADAPTER_TYPE_WIFI);
Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64,
ADAPTER_TYPE_ETHERNET);
Network wifi2("wifi2", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64,
ADAPTER_TYPE_WIFI);
std::vector<const Network*> networks = {&wifi1, ðe1, &wifi2};
networks = BasicPortAllocatorSession::SelectIPv6Networks(
networks, /*max_ipv6_networks=*/1);
EXPECT_EQ(1U, networks.size());
// Ensure ethe1 was selected.
EXPECT_TRUE(HasNetwork(networks, ethe1));
}
TEST_F(BasicPortAllocatorTest, IPv6EtherAndWifiHaveHigherPriorityThanOthers) {
Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64,
ADAPTER_TYPE_CELLULAR_3G);
Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64,
ADAPTER_TYPE_ETHERNET);
Network wifi1("wifi1", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64,
ADAPTER_TYPE_WIFI);
Network unknown("unknown", "Test NetworkAdapter 4", kClientIPv6Addr2.ipaddr(),
64, ADAPTER_TYPE_UNKNOWN);
Network vpn1("vpn1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(), 64,
ADAPTER_TYPE_VPN);
std::vector<const Network*> networks = {&cell1, ðe1, &wifi1, &unknown,
&vpn1};
networks = BasicPortAllocatorSession::SelectIPv6Networks(
networks, /*max_ipv6_networks=*/2);
EXPECT_EQ(2U, networks.size());
// Ensure ethe1 and wifi1 were selected.
EXPECT_TRUE(HasNetwork(networks, wifi1));
EXPECT_TRUE(HasNetwork(networks, ethe1));
}
TEST_F(BasicPortAllocatorTest, Select2DifferentIntefaces) {
allocator().set_max_ipv6_networks(2);
AddInterface(kClientIPv6Addr, "ethe1", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr2, "ethe2", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr3, "wifi1", ADAPTER_TYPE_WIFI);
AddInterface(kClientIPv6Addr4, "wifi2", ADAPTER_TYPE_WIFI);
AddInterface(kClientIPv6Addr5, "cell1", ADAPTER_TYPE_CELLULAR_3G);
// To simplify the test, only gather UDP host candidates.
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(2U, candidates_.size());
// ethe1 and wifi1 were selected.
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr3));
}
TEST_F(BasicPortAllocatorTest, Select3DifferentIntefaces) {
allocator().set_max_ipv6_networks(3);
AddInterface(kClientIPv6Addr, "ethe1", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr2, "ethe2", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr3, "wifi1", ADAPTER_TYPE_WIFI);
AddInterface(kClientIPv6Addr4, "wifi2", ADAPTER_TYPE_WIFI);
AddInterface(kClientIPv6Addr5, "cell1", ADAPTER_TYPE_CELLULAR_3G);
// To simplify the test, only gather UDP host candidates.
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(3U, candidates_.size());
// ethe1, wifi1, and cell1 were selected.
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr3));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr5));
}
TEST_F(BasicPortAllocatorTest, Select4DifferentIntefaces) {
allocator().set_max_ipv6_networks(4);
AddInterface(kClientIPv6Addr, "ethe1", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr2, "ethe2", ADAPTER_TYPE_ETHERNET);
AddInterface(kClientIPv6Addr3, "wifi1", ADAPTER_TYPE_WIFI);
AddInterface(kClientIPv6Addr4, "wifi2", ADAPTER_TYPE_WIFI);
AddInterface(kClientIPv6Addr5, "cell1", ADAPTER_TYPE_CELLULAR_3G);
// To simplify the test, only gather UDP host candidates.
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_THAT(
WaitUntil([&] { return candidate_allocation_done_; }, IsTrue(),
{.timeout = TimeDelta::Millis(kDefaultAllocationTimeout),
.clock = &fake_clock}),
IsRtcOk());
EXPECT_EQ(4U, candidates_.size());
// ethe1, ethe2, wifi1, and cell1 were selected.
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr2));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr3));
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
kClientIPv6Addr5));
}
} // namespace webrtc
|