1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*
* Copyright 2020 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef RTC_BASE_BOUNDED_INLINE_VECTOR_IMPL_H_
#define RTC_BASE_BOUNDED_INLINE_VECTOR_IMPL_H_
#include <stdint.h>
#include <cstring>
#include <memory>
#include <type_traits>
#include <utility>
namespace webrtc {
namespace bounded_inline_vector_impl {
template <bool...>
struct BoolPack;
// Tests if all its parameters (x0, x1, ..., xn) are true. The implementation
// checks whether (x0, x1, ..., xn, true) == (true, x0, x1, ..., xn), which is
// true iff true == x0 && x0 == x1 && x1 == x2 ... && xn-1 == xn && xn == true.
template <bool... Bs>
using AllTrue = std::is_same<BoolPack<Bs..., true>, BoolPack<true, Bs...>>;
template <typename To, typename... Froms>
using AllConvertible = AllTrue<std::is_convertible<Froms, To>::value...>;
// Initializes part of an uninitialized array. Unlike normal array
// initialization, does not zero the remaining array elements. Caller is
// responsible for ensuring that there is enough space in `data`.
template <typename T>
void InitializeElements(T* data) {}
template <typename T, typename U, typename... Us>
void InitializeElements(T* data, U&& element, Us&&... elements) {
// Placement new, because we construct a new object in uninitialized memory.
::new (data) T(std::forward<U>(element));
InitializeElements(data + 1, std::forward<Us>(elements)...);
}
// Default initializes uninitialized array elements.
template <typename T>
void DefaultInitializeElements(T* data, int size) {
std::uninitialized_default_construct_n(data, size);
}
// Copies from source to uninitialized destination. Caller is responsible for
// ensuring that there is enough space in `dst_data`.
template <typename T>
void CopyElements(const T* src_data, int src_size, T* dst_data, int* dst_size) {
if /*constexpr*/ (std::is_trivially_copy_constructible<T>::value) {
std::memcpy(dst_data, src_data, src_size * sizeof(T));
} else {
std::uninitialized_copy_n(src_data, src_size, dst_data);
}
*dst_size = src_size;
}
// Moves from source to uninitialized destination. Caller is responsible for
// ensuring that there is enough space in `dst_data`.
template <typename T>
void MoveElements(T* src_data, int src_size, T* dst_data, int* dst_size) {
if /*constexpr*/ (std::is_trivially_move_constructible<T>::value) {
std::memcpy(dst_data, src_data, src_size * sizeof(T));
} else {
std::uninitialized_move_n(src_data, src_size, dst_data);
}
*dst_size = src_size;
}
// Destroys elements, leaving them uninitialized.
template <typename T>
void DestroyElements(T* data, int size) {
if /*constexpr*/ (!std::is_trivially_destructible<T>::value) {
for (int i = 0; i < size; ++i) {
data[i].~T();
}
}
}
// If elements are trivial and the total capacity is at most this many bytes,
// copy everything instead of just the elements that are in use; this is more
// efficient, and makes BoundedInlineVector trivially copyable.
static constexpr int kSmallSize = 64;
// Storage implementations.
//
// There are diferent Storage structs for diferent kinds of element types. The
// common contract is the following:
//
// * They have public `size` variables and `data` array members.
//
// * Their owner is responsible for enforcing the invariant that the first
// `size` elements in `data` are initialized, and the remaining elements are
// not initialized.
//
// * They implement default construction, construction with one or more
// elements, copy/move construction, copy/move assignment, and destruction;
// the owner must ensure that the invariant holds whenever these operations
// occur.
// Storage implementation for nontrivial element types.
template <typename T,
int fixed_capacity,
bool is_trivial = std::is_trivial<T>::value,
bool is_small = (sizeof(T) * fixed_capacity <= kSmallSize)>
struct Storage {
static_assert(!std::is_trivial<T>::value, "");
template <
typename... Ts,
typename std::enable_if_t<AllConvertible<T, Ts...>::value>* = nullptr>
explicit Storage(Ts&&... elements) : size(sizeof...(Ts)) {
InitializeElements(data, std::forward<Ts>(elements)...);
}
Storage(const Storage& other) {
CopyElements(other.data, other.size, data, &size);
}
Storage(Storage&& other) {
MoveElements(other.data, other.size, data, &size);
}
Storage& operator=(const Storage& other) {
if (this != &other) {
DestroyElements(data, size);
CopyElements(other.data, other.size, data, &size);
}
return *this;
}
Storage& operator=(Storage&& other) {
DestroyElements(data, size);
size = 0; // Needed in case of self assignment.
MoveElements(other.data, other.size, data, &size);
return *this;
}
~Storage() { DestroyElements(data, size); }
int size;
union {
// Since this array is in a union, we get to construct and destroy it
// manually.
T data[fixed_capacity]; // NOLINT(runtime/arrays)
};
};
// Storage implementation for trivial element types when the capacity is small
// enough that we can cheaply copy everything.
template <typename T, int fixed_capacity>
struct Storage<T, fixed_capacity, /*is_trivial=*/true, /*is_small=*/true> {
static_assert(std::is_trivial<T>::value, "");
static_assert(sizeof(T) * fixed_capacity <= kSmallSize, "");
template <
typename... Ts,
typename std::enable_if_t<AllConvertible<T, Ts...>::value>* = nullptr>
explicit Storage(Ts&&... elements) : size(sizeof...(Ts)) {
InitializeElements(data, std::forward<Ts>(elements)...);
}
Storage(const Storage&) = default;
Storage& operator=(const Storage&) = default;
~Storage() = default;
int size;
T data[fixed_capacity]; // NOLINT(runtime/arrays)
};
// Storage implementation for trivial element types when the capacity is large
// enough that we want to avoid copying uninitialized elements.
template <typename T, int fixed_capacity>
struct Storage<T, fixed_capacity, /*is_trivial=*/true, /*is_small=*/false> {
static_assert(std::is_trivial<T>::value, "");
static_assert(sizeof(T) * fixed_capacity > kSmallSize, "");
template <
typename... Ts,
typename std::enable_if_t<AllConvertible<T, Ts...>::value>* = nullptr>
explicit Storage(Ts&&... elements) : size(sizeof...(Ts)) {
InitializeElements(data, std::forward<Ts>(elements)...);
}
Storage(const Storage& other) : size(other.size) {
std::memcpy(data, other.data, other.size * sizeof(T));
}
Storage& operator=(const Storage& other) {
if (this != &other) {
size = other.size;
std::memcpy(data, other.data, other.size * sizeof(T));
}
return *this;
}
~Storage() = default;
int size;
union {
T data[fixed_capacity]; // NOLINT(runtime/arrays)
};
};
} // namespace bounded_inline_vector_impl
} // namespace webrtc
#endif // RTC_BASE_BOUNDED_INLINE_VECTOR_IMPL_H_
|