1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/random.h"
#include <math.h>
#include <limits>
#include <numbers>
#include <vector>
#include "rtc_base/numerics/math_utils.h" // unsigned difference
#include "test/gtest.h"
namespace webrtc {
namespace {
// Computes the positive remainder of x/n.
template <typename T>
T fdiv_remainder(T x, T n) {
RTC_CHECK_GE(n, 0);
T remainder = x % n;
if (remainder < 0)
remainder += n;
return remainder;
}
} // namespace
// Sample a number of random integers of type T. Divide them into buckets
// based on the remainder when dividing by bucket_count and check that each
// bucket gets roughly the expected number of elements.
template <typename T>
void UniformBucketTest(T bucket_count, int samples, Random* prng) {
std::vector<int> buckets(bucket_count, 0);
uint64_t total_values = 1ull << (std::numeric_limits<T>::digits +
std::numeric_limits<T>::is_signed);
T upper_limit =
std::numeric_limits<T>::max() -
static_cast<T>(total_values % static_cast<uint64_t>(bucket_count));
ASSERT_GT(upper_limit, std::numeric_limits<T>::max() / 2);
for (int i = 0; i < samples; i++) {
T sample;
do {
// We exclude a few numbers from the range so that it is divisible by
// the number of buckets. If we are unlucky and hit one of the excluded
// numbers we just resample. Note that if the number of buckets is a
// power of 2, then we don't have to exclude anything.
sample = prng->Rand<T>();
} while (sample > upper_limit);
buckets[fdiv_remainder(sample, bucket_count)]++;
}
for (T i = 0; i < bucket_count; i++) {
// Expect the result to be within 3 standard deviations of the mean.
EXPECT_NEAR(buckets[i], samples / bucket_count,
3 * sqrt(samples / bucket_count));
}
}
TEST(RandomNumberGeneratorTest, BucketTestSignedChar) {
Random prng(7297352569824ull);
UniformBucketTest<signed char>(64, 640000, &prng);
UniformBucketTest<signed char>(11, 440000, &prng);
UniformBucketTest<signed char>(3, 270000, &prng);
}
TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) {
Random prng(7297352569824ull);
UniformBucketTest<unsigned char>(64, 640000, &prng);
UniformBucketTest<unsigned char>(11, 440000, &prng);
UniformBucketTest<unsigned char>(3, 270000, &prng);
}
TEST(RandomNumberGeneratorTest, BucketTestSignedShort) {
Random prng(7297352569824ull);
UniformBucketTest<int16_t>(64, 640000, &prng);
UniformBucketTest<int16_t>(11, 440000, &prng);
UniformBucketTest<int16_t>(3, 270000, &prng);
}
TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) {
Random prng(7297352569824ull);
UniformBucketTest<uint16_t>(64, 640000, &prng);
UniformBucketTest<uint16_t>(11, 440000, &prng);
UniformBucketTest<uint16_t>(3, 270000, &prng);
}
TEST(RandomNumberGeneratorTest, BucketTestSignedInt) {
Random prng(7297352569824ull);
UniformBucketTest<signed int>(64, 640000, &prng);
UniformBucketTest<signed int>(11, 440000, &prng);
UniformBucketTest<signed int>(3, 270000, &prng);
}
TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) {
Random prng(7297352569824ull);
UniformBucketTest<unsigned int>(64, 640000, &prng);
UniformBucketTest<unsigned int>(11, 440000, &prng);
UniformBucketTest<unsigned int>(3, 270000, &prng);
}
// The range of the random numbers is divided into bucket_count intervals
// of consecutive numbers. Check that approximately equally many numbers
// from each inteval are generated.
void BucketTestSignedInterval(unsigned int bucket_count,
unsigned int samples,
int32_t low,
int32_t high,
int sigma_level,
Random* prng) {
std::vector<unsigned int> buckets(bucket_count, 0);
ASSERT_GE(high, low);
ASSERT_GE(bucket_count, 2u);
uint32_t interval = webrtc_impl::unsigned_difference<int32_t>(high, low) + 1;
uint32_t numbers_per_bucket;
if (interval == 0) {
// The computation high - low + 1 should be 2^32 but overflowed
// Hence, bucket_count must be a power of 2
ASSERT_EQ(bucket_count & (bucket_count - 1), 0u);
numbers_per_bucket = (0x80000000u / bucket_count) * 2;
} else {
ASSERT_EQ(interval % bucket_count, 0u);
numbers_per_bucket = interval / bucket_count;
}
for (unsigned int i = 0; i < samples; i++) {
int32_t sample = prng->Rand(low, high);
EXPECT_LE(low, sample);
EXPECT_GE(high, sample);
buckets[webrtc_impl::unsigned_difference<int32_t>(sample, low) /
numbers_per_bucket]++;
}
for (unsigned int i = 0; i < bucket_count; i++) {
// Expect the result to be within 3 standard deviations of the mean,
// or more generally, within sigma_level standard deviations of the mean.
double mean = static_cast<double>(samples) / bucket_count;
EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
}
}
// The range of the random numbers is divided into bucket_count intervals
// of consecutive numbers. Check that approximately equally many numbers
// from each inteval are generated.
void BucketTestUnsignedInterval(unsigned int bucket_count,
unsigned int samples,
uint32_t low,
uint32_t high,
int sigma_level,
Random* prng) {
std::vector<unsigned int> buckets(bucket_count, 0);
ASSERT_GE(high, low);
ASSERT_GE(bucket_count, 2u);
uint32_t interval = high - low + 1;
uint32_t numbers_per_bucket;
if (interval == 0) {
// The computation high - low + 1 should be 2^32 but overflowed
// Hence, bucket_count must be a power of 2
ASSERT_EQ(bucket_count & (bucket_count - 1), 0u);
numbers_per_bucket = (0x80000000u / bucket_count) * 2;
} else {
ASSERT_EQ(interval % bucket_count, 0u);
numbers_per_bucket = interval / bucket_count;
}
for (unsigned int i = 0; i < samples; i++) {
uint32_t sample = prng->Rand(low, high);
EXPECT_LE(low, sample);
EXPECT_GE(high, sample);
buckets[(sample - low) / numbers_per_bucket]++;
}
for (unsigned int i = 0; i < bucket_count; i++) {
// Expect the result to be within 3 standard deviations of the mean,
// or more generally, within sigma_level standard deviations of the mean.
double mean = static_cast<double>(samples) / bucket_count;
EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
}
}
TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) {
Random prng(299792458ull);
BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng);
BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng);
BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng);
BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng);
BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng);
BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng);
// 99.7% of all samples will be within 3 standard deviations of the mean,
// but since we test 1000 buckets we allow an interval of 4 sigma.
BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng);
}
TEST(RandomNumberGeneratorTest, UniformSignedInterval) {
Random prng(66260695729ull);
BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng);
BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng);
BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng);
BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng);
BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::max(), 3, &prng);
BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng);
// 99.7% of all samples will be within 3 standard deviations of the mean,
// but since we test 1000 buckets we allow an interval of 4 sigma.
BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng);
}
// The range of the random numbers is divided into bucket_count intervals
// of consecutive numbers. Check that approximately equally many numbers
// from each inteval are generated.
void BucketTestFloat(unsigned int bucket_count,
unsigned int samples,
int sigma_level,
Random* prng) {
ASSERT_GE(bucket_count, 2u);
std::vector<unsigned int> buckets(bucket_count, 0);
for (unsigned int i = 0; i < samples; i++) {
uint32_t sample = bucket_count * prng->Rand<float>();
EXPECT_LE(0u, sample);
EXPECT_GE(bucket_count - 1, sample);
buckets[sample]++;
}
for (unsigned int i = 0; i < bucket_count; i++) {
// Expect the result to be within 3 standard deviations of the mean,
// or more generally, within sigma_level standard deviations of the mean.
double mean = static_cast<double>(samples) / bucket_count;
EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
}
}
TEST(RandomNumberGeneratorTest, UniformFloatInterval) {
Random prng(1380648813ull);
BucketTestFloat(100, 100000, 3, &prng);
// 99.7% of all samples will be within 3 standard deviations of the mean,
// but since we test 1000 buckets we allow an interval of 4 sigma.
// BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng);
}
TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) {
Random prng_signed(66738480ull), prng_unsigned(66738480ull);
for (int i = 0; i < 1000; i++) {
signed int s = prng_signed.Rand<signed int>();
unsigned int u = prng_unsigned.Rand<unsigned int>();
EXPECT_EQ(u, static_cast<unsigned int>(s));
}
for (int i = 0; i < 1000; i++) {
int16_t s = prng_signed.Rand<int16_t>();
uint16_t u = prng_unsigned.Rand<uint16_t>();
EXPECT_EQ(u, static_cast<uint16_t>(s));
}
for (int i = 0; i < 1000; i++) {
signed char s = prng_signed.Rand<signed char>();
unsigned char u = prng_unsigned.Rand<unsigned char>();
EXPECT_EQ(u, static_cast<unsigned char>(s));
}
}
TEST(RandomNumberGeneratorTest, Gaussian) {
const int kN = 100000;
const int kBuckets = 100;
const double kMean = 49;
const double kStddev = 10;
Random prng(1256637061);
std::vector<unsigned int> buckets(kBuckets, 0);
for (int i = 0; i < kN; i++) {
int index = prng.Gaussian(kMean, kStddev) + 0.5;
if (index >= 0 && index < kBuckets) {
buckets[index]++;
}
}
const double kPi = std::numbers::pi;
const double kScale = 1 / (kStddev * sqrt(2.0 * kPi));
const double kDiv = -2.0 * kStddev * kStddev;
for (int n = 0; n < kBuckets; ++n) {
// Use Simpsons rule to estimate the probability that a random gaussian
// sample is in the interval [n-0.5, n+0.5].
double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv);
double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv);
double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv);
double normal_dist = (f_left + 4 * f_mid + f_right) / 6;
// Expect the number of samples to be within 3 standard deviations
// (rounded up) of the expected number of samples in the bucket.
EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1);
}
}
} // namespace webrtc
|