1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
#!/usr/bin/env python3
# Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
"""Displays statistics and plots graphs from RTC protobuf dump."""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import collections
import optparse
import os
import sys
from six.moves import range
from six.moves import zip
import matplotlib.pyplot as plt
import numpy
import misc
import pb_parse
class RTPStatistics:
"""Has methods for calculating and plotting RTP stream statistics."""
BANDWIDTH_SMOOTHING_WINDOW_SIZE = 10
PLOT_RESOLUTION_MS = 50
def __init__(self, data_points):
"""Initializes object with data_points and computes simple statistics.
Computes percentages of number of packets and packet sizes by
SSRC.
Args:
data_points: list of pb_parse.DataPoints on which statistics are
calculated.
"""
self.data_points = data_points
self.ssrc_frequencies = misc.NormalizeCounter(
collections.Counter([pt.ssrc for pt in self.data_points]))
self.ssrc_size_table = misc.SsrcNormalizedSizeTable(self.data_points)
self.bandwidth_kbps = None
self.smooth_bw_kbps = None
def PrintHeaderStatistics(self):
print("{:>6}{:>14}{:>14}{:>6}{:>6}{:>3}{:>11}".format(
"SeqNo", "TimeStamp", "SendTime", "Size", "PT", "M", "SSRC"))
for point in self.data_points:
print("{:>6}{:>14}{:>14}{:>6}{:>6}{:>3}{:>11}".format(
point.sequence_number, point.timestamp,
int(point.arrival_timestamp_ms), point.size, point.payload_type,
point.marker_bit, "0x{:x}".format(point.ssrc)))
def PrintSsrcInfo(self, ssrc_id, ssrc):
"""Prints packet and size statistics for a given SSRC.
Args:
ssrc_id: textual identifier of SSRC printed beside statistics for it.
ssrc: SSRC by which to filter data and display statistics
"""
filtered_ssrc = [point for point in self.data_points if point.ssrc == ssrc]
payloads = misc.NormalizeCounter(
collections.Counter([point.payload_type for point in filtered_ssrc]))
payload_info = "payload type(s): {}".format(", ".join(
str(payload) for payload in payloads))
print("{} 0x{:x} {}, {:.2f}% packets, {:.2f}% data".format(
ssrc_id, ssrc, payload_info, self.ssrc_frequencies[ssrc] * 100,
self.ssrc_size_table[ssrc] * 100))
print(" packet sizes:")
(bin_counts,
bin_bounds) = numpy.histogram([point.size for point in filtered_ssrc],
bins=5,
density=False)
bin_proportions = bin_counts / sum(bin_counts)
print("\n".join([
" {:.1f} - {:.1f}: {:.2f}%".format(bin_bounds[i], bin_bounds[i + 1],
bin_proportions[i] * 100)
for i in range(len(bin_proportions))
]))
def ChooseSsrc(self):
"""Queries user for SSRC."""
if len(self.ssrc_frequencies) == 1:
chosen_ssrc = list(self.ssrc_frequencies.keys())[0]
self.PrintSsrcInfo("", chosen_ssrc)
return chosen_ssrc
ssrc_is_incoming = misc.SsrcDirections(self.data_points)
incoming = [ssrc for ssrc in ssrc_is_incoming if ssrc_is_incoming[ssrc]]
outgoing = [ssrc for ssrc in ssrc_is_incoming if not ssrc_is_incoming[ssrc]]
print("\nIncoming:\n")
for (i, ssrc) in enumerate(incoming):
self.PrintSsrcInfo(i, ssrc)
print("\nOutgoing:\n")
for (i, ssrc) in enumerate(outgoing):
self.PrintSsrcInfo(i + len(incoming), ssrc)
while True:
chosen_index = int(misc.get_input("choose one> "))
if 0 <= chosen_index < len(self.ssrc_frequencies):
return (incoming + outgoing)[chosen_index]
print("Invalid index!")
def FilterSsrc(self, chosen_ssrc):
"""Filters and wraps data points.
Removes data points with `ssrc != chosen_ssrc`. Unwraps sequence
numbers and timestamps for the chosen selection.
"""
self.data_points = [
point for point in self.data_points if point.ssrc == chosen_ssrc
]
unwrapped_sequence_numbers = misc.Unwrap(
[point.sequence_number for point in self.data_points], 2**16 - 1)
for (data_point, sequence_number) in zip(self.data_points,
unwrapped_sequence_numbers):
data_point.sequence_number = sequence_number
unwrapped_timestamps = misc.Unwrap(
[point.timestamp for point in self.data_points], 2**32 - 1)
for (data_point, timestamp) in zip(self.data_points, unwrapped_timestamps):
data_point.timestamp = timestamp
def PrintSequenceNumberStatistics(self):
seq_no_set = set(point.sequence_number for point in self.data_points)
missing_sequence_numbers = max(seq_no_set) - min(seq_no_set) + (
1 - len(seq_no_set))
print("Missing sequence numbers: {} out of {} ({:.2f}%)".format(
missing_sequence_numbers, len(seq_no_set),
100 * missing_sequence_numbers / len(seq_no_set)))
print("Duplicated packets: {}".format(
len(self.data_points) - len(seq_no_set)))
print("Reordered packets: {}".format(
misc.CountReordered(
[point.sequence_number for point in self.data_points])))
def EstimateFrequency(self, always_query_sample_rate):
"""Estimates frequency and updates data.
Guesses the most probable frequency by looking at changes in
timestamps (RFC 3550 section 5.1), calculates clock drifts and
sending time of packets. Updates `self.data_points` with changes
in delay and send time.
"""
delta_timestamp = (self.data_points[-1].timestamp -
self.data_points[0].timestamp)
delta_arr_timestamp = float((self.data_points[-1].arrival_timestamp_ms -
self.data_points[0].arrival_timestamp_ms))
freq_est = delta_timestamp / delta_arr_timestamp
freq_vec = [8, 16, 32, 48, 90]
freq = None
for f in freq_vec:
if abs((freq_est - f) / f) < 0.05:
freq = f
print("Estimated frequency: {:.3f}kHz".format(freq_est))
if freq is None or always_query_sample_rate:
if not always_query_sample_rate:
print("Frequency could not be guessed.", end=" ")
freq = int(misc.get_input("Input frequency (in kHz)> "))
else:
print("Guessed frequency: {}kHz".format(freq))
for point in self.data_points:
point.real_send_time_ms = (point.timestamp -
self.data_points[0].timestamp) / freq
point.delay = point.arrival_timestamp_ms - point.real_send_time_ms
def PrintDurationStatistics(self):
"""Prints delay, clock drift and bitrate statistics."""
min_delay = min(point.delay for point in self.data_points)
for point in self.data_points:
point.absdelay = point.delay - min_delay
stream_duration_sender = self.data_points[-1].real_send_time_ms / 1000
print("Stream duration at sender: {:.1f} seconds".format(
stream_duration_sender))
arrival_timestamps_ms = [
point.arrival_timestamp_ms for point in self.data_points
]
stream_duration_receiver = (max(arrival_timestamps_ms) -
min(arrival_timestamps_ms)) / 1000
print("Stream duration at receiver: {:.1f} seconds".format(
stream_duration_receiver))
print("Clock drift: {:.2f}%".format(
100 * (stream_duration_receiver / stream_duration_sender - 1)))
total_size = sum(point.size for point in self.data_points) * 8 / 1000
print("Send average bitrate: {:.2f} kbps".format(total_size /
stream_duration_sender))
print("Receive average bitrate: {:.2f} kbps".format(
total_size / stream_duration_receiver))
def RemoveReordered(self):
last = self.data_points[0]
data_points_ordered = [last]
for point in self.data_points[1:]:
if point.sequence_number > last.sequence_number and (
point.real_send_time_ms > last.real_send_time_ms):
data_points_ordered.append(point)
last = point
self.data_points = data_points_ordered
def ComputeBandwidth(self):
"""Computes bandwidth averaged over several consecutive packets.
The number of consecutive packets used in the average is
BANDWIDTH_SMOOTHING_WINDOW_SIZE. Averaging is done with
numpy.correlate.
"""
start_ms = self.data_points[0].real_send_time_ms
stop_ms = self.data_points[-1].real_send_time_ms
(self.bandwidth_kbps, _) = numpy.histogram(
[point.real_send_time_ms for point in self.data_points],
bins=numpy.arange(start_ms, stop_ms, RTPStatistics.PLOT_RESOLUTION_MS),
weights=[
point.size * 8 / RTPStatistics.PLOT_RESOLUTION_MS
for point in self.data_points
])
correlate_filter = (
numpy.ones(RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE) /
RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE)
self.smooth_bw_kbps = numpy.correlate(self.bandwidth_kbps, correlate_filter)
def PlotStatistics(self):
"""Plots changes in delay and average bandwidth."""
start_ms = self.data_points[0].real_send_time_ms
stop_ms = self.data_points[-1].real_send_time_ms
time_axis = numpy.arange(start_ms / 1000, stop_ms / 1000,
RTPStatistics.PLOT_RESOLUTION_MS / 1000)
delay = CalculateDelay(start_ms, stop_ms, RTPStatistics.PLOT_RESOLUTION_MS,
self.data_points)
plt.figure(1)
plt.plot(time_axis, delay[:len(time_axis)])
plt.xlabel("Send time [s]")
plt.ylabel("Relative transport delay [ms]")
plt.figure(2)
plt.plot(time_axis[:len(self.smooth_bw_kbps)], self.smooth_bw_kbps)
plt.xlabel("Send time [s]")
plt.ylabel("Bandwidth [kbps]")
plt.show()
def CalculateDelay(start, stop, step, points):
"""Quantizes the time coordinates for the delay.
Quantizes points by rounding the timestamps downwards to the nearest
point in the time sequence start, start+step, start+2*step... Takes
the average of the delays of points rounded to the same. Returns
masked array, in which time points with no value are masked.
"""
grouped_delays = [[] for _ in numpy.arange(start, stop + step, step)]
rounded_value_index = lambda x: int((x - start) / step)
for point in points:
grouped_delays[rounded_value_index(point.real_send_time_ms)].append(
point.absdelay)
regularized_delays = [
numpy.average(arr) if arr else -1 for arr in grouped_delays
]
return numpy.ma.masked_values(regularized_delays, -1)
def main():
usage = "Usage: %prog [options] <filename of rtc event log>"
parser = optparse.OptionParser(usage=usage)
parser.add_option("--dump_header_to_stdout",
default=False,
action="store_true",
help="print header info to stdout; similar to rtp_analyze")
parser.add_option("--query_sample_rate",
default=False,
action="store_true",
help="always query user for real sample rate")
parser.add_option("--working_directory",
default=None,
action="store",
help="directory in which to search for relative paths")
(options, args) = parser.parse_args()
if len(args) < 1:
parser.print_help()
sys.exit(0)
input_file = args[0]
if options.working_directory and not os.path.isabs(input_file):
input_file = os.path.join(options.working_directory, input_file)
data_points = pb_parse.ParseProtobuf(input_file)
rtp_stats = RTPStatistics(data_points)
if options.dump_header_to_stdout:
print("Printing header info to stdout.", file=sys.stderr)
rtp_stats.PrintHeaderStatistics()
sys.exit(0)
chosen_ssrc = rtp_stats.ChooseSsrc()
print("Chosen SSRC: 0X{:X}".format(chosen_ssrc))
rtp_stats.FilterSsrc(chosen_ssrc)
print("Statistics:")
rtp_stats.PrintSequenceNumberStatistics()
rtp_stats.EstimateFrequency(options.query_sample_rate)
rtp_stats.PrintDurationStatistics()
rtp_stats.RemoveReordered()
rtp_stats.ComputeBandwidth()
rtp_stats.PlotStatistics()
if __name__ == "__main__":
main()
|