1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_tools/rtc_event_log_visualizer/alerts.h"
#include <stdio.h>
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <map>
#include <optional>
#include <string>
#include "api/units/timestamp.h"
#include "logging/rtc_event_log/events/logged_rtp_rtcp.h"
#include "logging/rtc_event_log/rtc_event_log_parser.h"
#include "rtc_base/numerics/sequence_number_unwrapper.h"
#include "rtc_tools/rtc_event_log_visualizer/analyzer_common.h"
namespace webrtc {
void TriageHelper::AnalyzeStreamGaps(const ParsedRtcEventLog& parsed_log,
PacketDirection direction) {
// With 100 packets/s (~800kbps), false positives would require 10 s without
// data.
constexpr int64_t kMaxSeqNumJump = 1000;
// With a 90 kHz clock, false positives would require 10 s without data.
constexpr int64_t kTicksPerMillisec = 90;
constexpr int64_t kCaptureTimeGraceMs = 10000;
std::string seq_num_explanation =
direction == kIncomingPacket
? "Incoming RTP sequence number jumps more than 1000. Counter may "
"have been reset or rewritten incorrectly in a group call."
: "Outgoing RTP sequence number jumps more than 1000. Counter may "
"have been reset.";
std::string capture_time_explanation =
direction == kIncomingPacket ? "Incoming capture time jumps more than "
"10s. Clock might have been reset."
: "Outgoing capture time jumps more than "
"10s. Clock might have been reset.";
TriageAlertType seq_num_alert = direction == kIncomingPacket
? TriageAlertType::kIncomingSeqNumJump
: TriageAlertType::kOutgoingSeqNumJump;
TriageAlertType capture_time_alert =
direction == kIncomingPacket ? TriageAlertType::kIncomingCaptureTimeJump
: TriageAlertType::kOutgoingCaptureTimeJump;
const int64_t segment_end_us = parsed_log.first_log_segment().stop_time_us();
// Check for gaps in sequence numbers and capture timestamps.
for (const auto& stream : parsed_log.rtp_packets_by_ssrc(direction)) {
if (IsRtxSsrc(parsed_log, direction, stream.ssrc)) {
continue;
}
auto packets = stream.packet_view;
if (packets.empty()) {
continue;
}
SeqNumUnwrapper<uint16_t> seq_num_unwrapper;
int64_t last_seq_num =
seq_num_unwrapper.Unwrap(packets[0].header.sequenceNumber);
SeqNumUnwrapper<uint32_t> capture_time_unwrapper;
int64_t last_capture_time =
capture_time_unwrapper.Unwrap(packets[0].header.timestamp);
int64_t last_log_time_ms = packets[0].log_time_ms();
for (const auto& packet : packets) {
if (packet.log_time_us() > segment_end_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t seq_num = seq_num_unwrapper.Unwrap(packet.header.sequenceNumber);
if (std::abs(seq_num - last_seq_num) > kMaxSeqNumJump) {
Alert(seq_num_alert, config_.GetCallTimeSec(packet.log_time()),
seq_num_explanation);
}
last_seq_num = seq_num;
int64_t capture_time =
capture_time_unwrapper.Unwrap(packet.header.timestamp);
if (std::abs(capture_time - last_capture_time) >
kTicksPerMillisec *
(kCaptureTimeGraceMs + packet.log_time_ms() - last_log_time_ms)) {
Alert(capture_time_alert, config_.GetCallTimeSec(packet.log_time()),
capture_time_explanation);
}
last_capture_time = capture_time;
}
}
}
void TriageHelper::AnalyzeTransmissionGaps(const ParsedRtcEventLog& parsed_log,
PacketDirection direction) {
constexpr int64_t kMaxRtpTransmissionGap = 500000;
constexpr int64_t kMaxRtcpTransmissionGap = 3000000;
std::string rtp_explanation =
direction == kIncomingPacket
? "No RTP packets received for more than 500ms. This indicates a "
"network problem. Temporary video freezes and choppy or robotic "
"audio is unavoidable. Unnecessary BWE drops is a known issue."
: "No RTP packets sent for more than 500 ms. This might be an issue "
"with the pacer.";
std::string rtcp_explanation =
direction == kIncomingPacket
? "No RTCP packets received for more than 3 s. Could be a longer "
"connection outage"
: "No RTCP packets sent for more than 3 s. This is most likely a "
"bug.";
TriageAlertType rtp_alert = direction == kIncomingPacket
? TriageAlertType::kIncomingRtpGap
: TriageAlertType::kOutgoingRtpGap;
TriageAlertType rtcp_alert = direction == kIncomingPacket
? TriageAlertType::kIncomingRtcpGap
: TriageAlertType::kOutgoingRtcpGap;
const int64_t segment_end_us = parsed_log.first_log_segment().stop_time_us();
// TODO(terelius): The parser could provide a list of all packets, ordered
// by time, for each direction.
std::multimap<int64_t, const LoggedRtpPacket*> rtp_in_direction;
for (const auto& stream : parsed_log.rtp_packets_by_ssrc(direction)) {
for (const LoggedRtpPacket& rtp_packet : stream.packet_view)
rtp_in_direction.emplace(rtp_packet.log_time_us(), &rtp_packet);
}
std::optional<int64_t> last_rtp_time;
for (const auto& kv : rtp_in_direction) {
int64_t timestamp = kv.first;
if (timestamp > segment_end_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t duration = timestamp - last_rtp_time.value_or(0);
if (last_rtp_time.has_value() && duration > kMaxRtpTransmissionGap) {
// No packet sent/received for more than 500 ms.
Alert(rtp_alert, config_.GetCallTimeSec(Timestamp::Micros(timestamp)),
rtp_explanation);
}
last_rtp_time.emplace(timestamp);
}
std::optional<int64_t> last_rtcp_time;
if (direction == kIncomingPacket) {
for (const auto& rtcp : parsed_log.incoming_rtcp_packets()) {
if (rtcp.log_time_us() > segment_end_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t duration = rtcp.log_time_us() - last_rtcp_time.value_or(0);
if (last_rtcp_time.has_value() && duration > kMaxRtcpTransmissionGap) {
// No feedback sent/received for more than 2000 ms.
Alert(rtcp_alert, config_.GetCallTimeSec(rtcp.log_time()),
rtcp_explanation);
}
last_rtcp_time.emplace(rtcp.log_time_us());
}
} else {
for (const auto& rtcp : parsed_log.outgoing_rtcp_packets()) {
if (rtcp.log_time_us() > segment_end_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t duration = rtcp.log_time_us() - last_rtcp_time.value_or(0);
if (last_rtcp_time.has_value() && duration > kMaxRtcpTransmissionGap) {
// No feedback sent/received for more than 2000 ms.
Alert(rtcp_alert, config_.GetCallTimeSec(rtcp.log_time()),
rtcp_explanation);
}
last_rtcp_time.emplace(rtcp.log_time_us());
}
}
}
// TODO(terelius): Notifications could possibly be generated by the same code
// that produces the graphs. There is some code duplication that could be
// avoided, but that might be solved anyway when we move functionality from the
// analyzer to the parser.
void TriageHelper::AnalyzeLog(const ParsedRtcEventLog& parsed_log) {
AnalyzeStreamGaps(parsed_log, kIncomingPacket);
AnalyzeStreamGaps(parsed_log, kOutgoingPacket);
AnalyzeTransmissionGaps(parsed_log, kIncomingPacket);
AnalyzeTransmissionGaps(parsed_log, kOutgoingPacket);
const int64_t segment_end_us = parsed_log.first_log_segment().stop_time_us();
Timestamp first_occurrence = parsed_log.last_timestamp();
constexpr double kMaxLossFraction = 0.05;
// Loss feedback
int64_t total_lost_packets = 0;
int64_t total_expected_packets = 0;
for (auto& bwe_update : parsed_log.bwe_loss_updates()) {
if (bwe_update.log_time_us() > segment_end_us) {
// Only process the first (LOG_START, LOG_END) segment.
break;
}
int64_t lost_packets = static_cast<double>(bwe_update.fraction_lost) / 255 *
bwe_update.expected_packets;
total_lost_packets += lost_packets;
total_expected_packets += bwe_update.expected_packets;
if (bwe_update.fraction_lost >= 255 * kMaxLossFraction) {
first_occurrence = std::min(first_occurrence, bwe_update.log_time());
}
}
double avg_outgoing_loss =
static_cast<double>(total_lost_packets) / total_expected_packets;
if (avg_outgoing_loss > kMaxLossFraction) {
Alert(TriageAlertType::kOutgoingHighLoss,
config_.GetCallTimeSec(first_occurrence),
"More than 5% of outgoing packets lost.");
}
}
void TriageHelper::Print(FILE* file) {
fprintf(file, "========== TRIAGE NOTIFICATIONS ==========\n");
for (const auto& alert : triage_alerts_) {
fprintf(file, "%d %s. First occurrence at %3.3lf\n", alert.second.count,
alert.second.explanation.c_str(), alert.second.first_occurrence);
}
fprintf(file, "========== END TRIAGE NOTIFICATIONS ==========\n");
}
void TriageHelper::ProcessAlerts(
std::function<void(int, float, std::string)> f) {
for (const auto& alert : triage_alerts_) {
f(alert.second.count, alert.second.first_occurrence,
alert.second.explanation);
}
}
} // namespace webrtc
|