1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/fuzzers/audio_processing_fuzzer_helper.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include "api/array_view.h"
#include "api/audio/audio_frame.h"
#include "api/audio/audio_processing.h"
#include "api/scoped_refptr.h"
#include "modules/audio_processing/include/audio_frame_proxies.h"
#include "rtc_base/checks.h"
#include "test/fuzzers/fuzz_data_helper.h"
namespace webrtc {
namespace {
bool ValidForApm(float x) {
return std::isfinite(x) && -1.0f <= x && x <= 1.0f;
}
void GenerateFloatFrame(test::FuzzDataHelper* fuzz_data,
int input_rate,
int num_channels,
float* const* float_frames) {
const int samples_per_input_channel =
AudioProcessing::GetFrameSize(input_rate);
RTC_DCHECK_LE(samples_per_input_channel, 480);
for (int i = 0; i < num_channels; ++i) {
std::fill(float_frames[i], float_frames[i] + samples_per_input_channel, 0);
const size_t read_bytes = sizeof(float) * samples_per_input_channel;
if (fuzz_data->CanReadBytes(read_bytes)) {
ArrayView<const uint8_t> byte_array =
fuzz_data->ReadByteArray(read_bytes);
memmove(float_frames[i], byte_array.begin(), read_bytes);
}
// Sanitize input.
for (int j = 0; j < samples_per_input_channel; ++j) {
if (!ValidForApm(float_frames[i][j])) {
float_frames[i][j] = 0.f;
}
}
}
}
void GenerateFixedFrame(test::FuzzDataHelper* fuzz_data,
int input_rate,
int num_channels,
AudioFrame* fixed_frame) {
const int samples_per_input_channel =
AudioProcessing::GetFrameSize(input_rate);
fixed_frame->samples_per_channel_ = samples_per_input_channel;
fixed_frame->sample_rate_hz_ = input_rate;
fixed_frame->num_channels_ = num_channels;
RTC_DCHECK_LE(samples_per_input_channel * num_channels,
AudioFrame::kMaxDataSizeSamples);
for (int i = 0; i < samples_per_input_channel * num_channels; ++i) {
fixed_frame->mutable_data()[i] = fuzz_data->ReadOrDefaultValue<int16_t>(0);
}
}
} // namespace
void FuzzAudioProcessing(test::FuzzDataHelper* fuzz_data,
scoped_refptr<AudioProcessing> apm) {
AudioFrame fixed_frame;
// Normal usage is up to 8 channels. Allowing to fuzz one beyond this allows
// us to catch implicit assumptions about normal usage.
constexpr int kMaxNumChannels = 9;
std::array<std::array<float, 480>, kMaxNumChannels> float_frames;
std::array<float*, kMaxNumChannels> float_frame_ptrs;
for (int i = 0; i < kMaxNumChannels; ++i) {
float_frame_ptrs[i] = float_frames[i].data();
}
float* const* ptr_to_float_frames = &float_frame_ptrs[0];
constexpr int kSampleRatesHz[] = {8000, 11025, 16000, 22050,
32000, 44100, 48000};
// We may run out of fuzz data in the middle of a loop iteration. In
// that case, default values will be used for the rest of that
// iteration.
while (fuzz_data->CanReadBytes(1)) {
const bool is_float = fuzz_data->ReadOrDefaultValue(true);
// Decide input/output rate for this iteration.
const int input_rate = fuzz_data->SelectOneOf(kSampleRatesHz);
const int output_rate = fuzz_data->SelectOneOf(kSampleRatesHz);
const uint8_t stream_delay = fuzz_data->ReadOrDefaultValue<uint8_t>(0);
// API call needed for AECM to run.
apm->set_stream_delay_ms(stream_delay);
const bool key_pressed = fuzz_data->ReadOrDefaultValue(true);
apm->set_stream_key_pressed(key_pressed);
// Make the APM call depending on capture/render mode and float /
// fix interface.
const bool is_capture = fuzz_data->ReadOrDefaultValue(true);
// Fill the arrays with audio samples from the data.
int apm_return_code = AudioProcessing::Error::kNoError;
if (is_float) {
const int num_channels =
fuzz_data->ReadOrDefaultValue<uint8_t>(1) % kMaxNumChannels;
GenerateFloatFrame(fuzz_data, input_rate, num_channels,
ptr_to_float_frames);
if (is_capture) {
apm_return_code = apm->ProcessStream(
ptr_to_float_frames, StreamConfig(input_rate, num_channels),
StreamConfig(output_rate, num_channels), ptr_to_float_frames);
} else {
apm_return_code = apm->ProcessReverseStream(
ptr_to_float_frames, StreamConfig(input_rate, num_channels),
StreamConfig(output_rate, num_channels), ptr_to_float_frames);
}
} else {
const int num_channels = fuzz_data->ReadOrDefaultValue(true) ? 2 : 1;
GenerateFixedFrame(fuzz_data, input_rate, num_channels, &fixed_frame);
if (is_capture) {
apm_return_code = ProcessAudioFrame(apm.get(), &fixed_frame);
} else {
apm_return_code = ProcessReverseAudioFrame(apm.get(), &fixed_frame);
}
}
// Cover stats gathering code paths.
static_cast<void>(apm->GetStatistics(true /*has_remote_tracks*/));
RTC_DCHECK_NE(apm_return_code, AudioProcessing::kBadDataLengthError);
}
}
} // namespace webrtc
|