1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/*
* Copyright (c) 2023 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/jitter/delay_variation_calculator.h"
#include <optional>
#include <string>
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace test {
namespace {
constexpr Frequency k90000Hz = Frequency::Hertz(90000);
} // namespace
void DelayVariationCalculator::Insert(
uint32_t rtp_timestamp,
Timestamp arrival_time,
DataSize size,
std::optional<int> spatial_layer,
std::optional<int> temporal_layer,
std::optional<VideoFrameType> frame_type) {
Frame frame{.rtp_timestamp = rtp_timestamp,
.unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp),
.arrival_time = arrival_time,
.size = size,
.spatial_layer = spatial_layer,
.temporal_layer = temporal_layer,
.frame_type = frame_type};
// Using RTP timestamp as the time series sample identifier allows for
// cross-correlating time series logged by different objects at different
// arrival timestamps.
Timestamp sample_time =
Timestamp::Millis((frame.unwrapped_rtp_timestamp / k90000Hz).ms());
MetadataT sample_metadata = BuildMetadata(frame);
if (!prev_frame_) {
InsertFirstFrame(frame, sample_time, sample_metadata);
} else {
InsertFrame(frame, sample_time, sample_metadata);
}
prev_frame_ = frame;
}
void DelayVariationCalculator::InsertFirstFrame(const Frame& frame,
Timestamp sample_time,
MetadataT sample_metadata) {
const auto s = [=](double sample_value) {
return SamplesStatsCounter::StatsSample{.value = sample_value,
.time = sample_time,
.metadata = sample_metadata};
};
time_series_.rtp_timestamps.AddSample(
s(static_cast<double>(frame.rtp_timestamp)));
time_series_.arrival_times_ms.AddSample(s(frame.arrival_time.ms<double>()));
time_series_.sizes_bytes.AddSample(s(frame.size.bytes<double>()));
time_series_.inter_departure_times_ms.AddSample(s(0.0));
time_series_.inter_arrival_times_ms.AddSample(s(0.0));
time_series_.inter_delay_variations_ms.AddSample(s(0.0));
time_series_.inter_size_variations_bytes.AddSample(s(0.0));
}
void DelayVariationCalculator::InsertFrame(const Frame& frame,
Timestamp sample_time,
MetadataT sample_metadata) {
int64_t inter_rtp_time =
frame.unwrapped_rtp_timestamp - prev_frame_->unwrapped_rtp_timestamp;
TimeDelta inter_departure_time = inter_rtp_time / k90000Hz;
TimeDelta inter_arrival_time = frame.arrival_time - prev_frame_->arrival_time;
TimeDelta inter_delay_variation = inter_arrival_time - inter_departure_time;
double inter_size_variation_bytes =
frame.size.bytes<double>() - prev_frame_->size.bytes<double>();
const auto s = [=](double sample_value) {
return SamplesStatsCounter::StatsSample{.value = sample_value,
.time = sample_time,
.metadata = sample_metadata};
};
const auto ms = [](const TimeDelta& td) { return td.ms<double>(); };
time_series_.rtp_timestamps.AddSample(
s(static_cast<double>(frame.rtp_timestamp)));
time_series_.arrival_times_ms.AddSample(s(frame.arrival_time.ms<double>()));
time_series_.sizes_bytes.AddSample(s(frame.size.bytes<double>()));
time_series_.inter_departure_times_ms.AddSample(s(ms(inter_departure_time)));
time_series_.inter_arrival_times_ms.AddSample(s(ms(inter_arrival_time)));
time_series_.inter_delay_variations_ms.AddSample(
s(ms(inter_delay_variation)));
time_series_.inter_size_variations_bytes.AddSample(
s(inter_size_variation_bytes));
}
DelayVariationCalculator::MetadataT DelayVariationCalculator::BuildMetadata(
const Frame& frame) {
MetadataT metadata;
if (prev_frame_) {
if (prev_frame_->spatial_layer) {
metadata["sl_prev"] = std::to_string(*prev_frame_->spatial_layer);
}
if (prev_frame_->temporal_layer) {
metadata["tl_prev"] = std::to_string(*prev_frame_->temporal_layer);
}
if (prev_frame_->frame_type) {
metadata["frame_type_prev"] =
VideoFrameTypeToString(*prev_frame_->frame_type);
}
}
if (frame.spatial_layer) {
metadata["sl"] = std::to_string(*frame.spatial_layer);
}
if (frame.temporal_layer) {
metadata["tl"] = std::to_string(*frame.temporal_layer);
}
if (frame.frame_type) {
metadata["frame_type"] = VideoFrameTypeToString(*frame.frame_type);
}
return metadata;
}
} // namespace test
} // namespace webrtc
|