1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/network/cross_traffic.h"
#include <math.h>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <utility>
#include "absl/functional/any_invocable.h"
#include "api/sequence_checker.h"
#include "api/task_queue/task_queue_base.h"
#include "api/test/network_emulation/cross_traffic.h"
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "cross_traffic.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "rtc_base/strings/string_builder.h"
#include "system_wrappers/include/clock.h"
#include "test/network/network_emulation.h"
#include "test/scenario/column_printer.h"
namespace webrtc {
namespace test {
RandomWalkCrossTraffic::RandomWalkCrossTraffic(RandomWalkConfig config,
CrossTrafficRoute* traffic_route)
: config_(config),
traffic_route_(traffic_route),
random_(config_.random_seed) {
sequence_checker_.Detach();
}
RandomWalkCrossTraffic::~RandomWalkCrossTraffic() = default;
void RandomWalkCrossTraffic::Process(Timestamp at_time) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
if (last_process_time_.IsMinusInfinity()) {
last_process_time_ = at_time;
}
TimeDelta delta = at_time - last_process_time_;
last_process_time_ = at_time;
if (at_time - last_update_time_ >= config_.update_interval) {
intensity_ += random_.Gaussian(config_.bias, config_.variance) *
sqrt((at_time - last_update_time_).seconds<double>());
intensity_ = SafeClamp(intensity_, 0.0, 1.0);
last_update_time_ = at_time;
}
pending_size_ += TrafficRate() * delta;
if (pending_size_ >= config_.min_packet_size &&
at_time >= last_send_time_ + config_.min_packet_interval) {
traffic_route_->SendPacket(pending_size_.bytes());
pending_size_ = DataSize::Zero();
last_send_time_ = at_time;
}
}
TimeDelta RandomWalkCrossTraffic::GetProcessInterval() const {
return config_.min_packet_interval;
}
DataRate RandomWalkCrossTraffic::TrafficRate() const {
RTC_DCHECK_RUN_ON(&sequence_checker_);
return config_.peak_rate * intensity_;
}
ColumnPrinter RandomWalkCrossTraffic::StatsPrinter() {
return ColumnPrinter::Lambda(
"random_walk_cross_traffic_rate",
[this](SimpleStringBuilder& sb) {
sb.AppendFormat("%.0lf", TrafficRate().bps() / 8.0);
},
32);
}
PulsedPeaksCrossTraffic::PulsedPeaksCrossTraffic(
PulsedPeaksConfig config,
CrossTrafficRoute* traffic_route)
: config_(config), traffic_route_(traffic_route) {
sequence_checker_.Detach();
}
PulsedPeaksCrossTraffic::~PulsedPeaksCrossTraffic() = default;
void PulsedPeaksCrossTraffic::Process(Timestamp at_time) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
TimeDelta time_since_toggle = at_time - last_update_time_;
if (time_since_toggle.IsInfinite() ||
(sending_ && time_since_toggle >= config_.send_duration)) {
sending_ = false;
last_update_time_ = at_time;
} else if (!sending_ && time_since_toggle >= config_.hold_duration) {
sending_ = true;
last_update_time_ = at_time;
// Start sending period.
last_send_time_ = at_time;
}
if (sending_) {
DataSize pending_size = config_.peak_rate * (at_time - last_send_time_);
if (pending_size >= config_.min_packet_size &&
at_time >= last_send_time_ + config_.min_packet_interval) {
traffic_route_->SendPacket(pending_size.bytes());
last_send_time_ = at_time;
}
}
}
TimeDelta PulsedPeaksCrossTraffic::GetProcessInterval() const {
return config_.min_packet_interval;
}
DataRate PulsedPeaksCrossTraffic::TrafficRate() const {
RTC_DCHECK_RUN_ON(&sequence_checker_);
return sending_ ? config_.peak_rate : DataRate::Zero();
}
ColumnPrinter PulsedPeaksCrossTraffic::StatsPrinter() {
return ColumnPrinter::Lambda(
"pulsed_peaks_cross_traffic_rate",
[this](SimpleStringBuilder& sb) {
sb.AppendFormat("%.0lf", TrafficRate().bps() / 8.0);
},
32);
}
TcpMessageRouteImpl::TcpMessageRouteImpl(Clock* clock,
TaskQueueBase* task_queue,
EmulatedRoute* send_route,
EmulatedRoute* ret_route)
: clock_(clock),
task_queue_(task_queue),
request_route_(send_route,
[this](TcpPacket packet, Timestamp) {
OnRequest(std::move(packet));
}),
response_route_(ret_route,
[this](TcpPacket packet, Timestamp arrival_time) {
OnResponse(std::move(packet), arrival_time);
}) {}
void TcpMessageRouteImpl::SendMessage(size_t size,
absl::AnyInvocable<void()> on_received) {
task_queue_->PostTask(
[this, size, handler = std::move(on_received)]() mutable {
// If we are currently sending a message we won't reset the connection,
// we'll act as if the messages are sent in the same TCP stream. This is
// intended to simulate recreation of a TCP session for each message
// in the typical case while avoiding the complexity overhead of
// maintaining multiple virtual TCP sessions in parallel.
if (pending_.empty() && in_flight_.empty()) {
cwnd_ = 10;
ssthresh_ = INFINITY;
}
int64_t data_left = static_cast<int64_t>(size);
int64_t kMaxPacketSize = 1200;
int64_t kMinPacketSize = 4;
Message message{std::move(handler)};
while (data_left > 0) {
int64_t packet_size = std::min(data_left, kMaxPacketSize);
int fragment_id = next_fragment_id_++;
pending_.push_back(MessageFragment{
fragment_id,
static_cast<size_t>(std::max(kMinPacketSize, packet_size))});
message.pending_fragment_ids.insert(fragment_id);
data_left -= packet_size;
}
messages_.emplace_back(std::move(message));
SendPackets(clock_->CurrentTime());
});
}
void TcpMessageRouteImpl::OnRequest(TcpPacket packet_info) {
for (auto it = messages_.begin(); it != messages_.end(); ++it) {
if (it->pending_fragment_ids.count(packet_info.fragment.fragment_id) != 0) {
it->pending_fragment_ids.erase(packet_info.fragment.fragment_id);
if (it->pending_fragment_ids.empty()) {
it->handler();
messages_.erase(it);
}
break;
}
}
const size_t kAckPacketSize = 20;
response_route_.SendPacket(kAckPacketSize, packet_info);
}
void TcpMessageRouteImpl::OnResponse(TcpPacket packet_info, Timestamp at_time) {
auto it = in_flight_.find(packet_info.sequence_number);
if (it != in_flight_.end()) {
last_rtt_ = at_time - packet_info.send_time;
in_flight_.erase(it);
}
auto lost_end = in_flight_.lower_bound(packet_info.sequence_number);
for (auto lost_it = in_flight_.begin(); lost_it != lost_end;
lost_it = in_flight_.erase(lost_it)) {
pending_.push_front(lost_it->second.fragment);
}
if (packet_info.sequence_number - last_acked_seq_num_ > 1) {
HandleLoss(at_time);
} else if (cwnd_ <= ssthresh_) {
cwnd_ += 1;
} else {
cwnd_ += 1.0f / cwnd_;
}
last_acked_seq_num_ =
std::max(packet_info.sequence_number, last_acked_seq_num_);
SendPackets(at_time);
}
void TcpMessageRouteImpl::HandleLoss(Timestamp at_time) {
if (at_time - last_reduction_time_ < last_rtt_)
return;
last_reduction_time_ = at_time;
ssthresh_ = std::max(static_cast<int>(in_flight_.size() / 2), 2);
cwnd_ = ssthresh_;
}
void TcpMessageRouteImpl::SendPackets(Timestamp at_time) {
const TimeDelta kPacketTimeout = TimeDelta::Seconds(1);
int cwnd = std::ceil(cwnd_);
int packets_to_send = std::max(cwnd - static_cast<int>(in_flight_.size()), 0);
while (packets_to_send-- > 0 && !pending_.empty()) {
auto seq_num = next_sequence_number_++;
TcpPacket send;
send.sequence_number = seq_num;
send.send_time = at_time;
send.fragment = pending_.front();
pending_.pop_front();
request_route_.SendPacket(send.fragment.size, send);
in_flight_.insert({seq_num, send});
task_queue_->PostDelayedTask(
[this, seq_num] {
HandlePacketTimeout(seq_num, clock_->CurrentTime());
},
kPacketTimeout);
}
}
void TcpMessageRouteImpl::HandlePacketTimeout(int seq_num, Timestamp at_time) {
auto lost = in_flight_.find(seq_num);
if (lost != in_flight_.end()) {
pending_.push_front(lost->second.fragment);
in_flight_.erase(lost);
HandleLoss(at_time);
SendPackets(at_time);
}
}
FakeTcpCrossTraffic::FakeTcpCrossTraffic(FakeTcpConfig config,
EmulatedRoute* send_route,
EmulatedRoute* ret_route)
: conf_(config), route_(this, send_route, ret_route) {}
TimeDelta FakeTcpCrossTraffic::GetProcessInterval() const {
return conf_.process_interval;
}
void FakeTcpCrossTraffic::Process(Timestamp at_time) {
SendPackets(at_time);
}
void FakeTcpCrossTraffic::OnRequest(int sequence_number, Timestamp at_time) {
const size_t kAckPacketSize = 20;
route_.SendResponse(kAckPacketSize, sequence_number);
}
void FakeTcpCrossTraffic::OnResponse(int sequence_number, Timestamp at_time) {
ack_received_ = true;
auto it = in_flight_.find(sequence_number);
if (it != in_flight_.end()) {
last_rtt_ = at_time - in_flight_.at(sequence_number);
in_flight_.erase(sequence_number);
}
if (sequence_number - last_acked_seq_num_ > 1) {
HandleLoss(at_time);
} else if (cwnd_ <= ssthresh_) {
cwnd_ += 1;
} else {
cwnd_ += 1.0f / cwnd_;
}
last_acked_seq_num_ = std::max(sequence_number, last_acked_seq_num_);
SendPackets(at_time);
}
void FakeTcpCrossTraffic::HandleLoss(Timestamp at_time) {
if (at_time - last_reduction_time_ < last_rtt_)
return;
last_reduction_time_ = at_time;
ssthresh_ = std::max(static_cast<int>(in_flight_.size() / 2), 2);
cwnd_ = ssthresh_;
}
void FakeTcpCrossTraffic::SendPackets(Timestamp at_time) {
int cwnd = std::ceil(cwnd_);
int packets_to_send = std::max(cwnd - static_cast<int>(in_flight_.size()), 0);
bool timeouts = false;
for (auto it = in_flight_.begin(); it != in_flight_.end();) {
if (it->second < at_time - conf_.packet_timeout) {
it = in_flight_.erase(it);
timeouts = true;
} else {
++it;
}
}
if (timeouts)
HandleLoss(at_time);
for (int i = 0; i < packets_to_send; ++i) {
if ((total_sent_ + conf_.packet_size) > conf_.send_limit) {
break;
}
in_flight_.insert({next_sequence_number_, at_time});
route_.SendRequest(conf_.packet_size.bytes<size_t>(),
next_sequence_number_++);
total_sent_ += conf_.packet_size;
}
}
} // namespace test
} // namespace webrtc
|