1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/network/cross_traffic.h"
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <vector>
#include "api/test/network_emulation/cross_traffic.h"
#include "api/test/network_emulation/network_emulation_interfaces.h"
#include "api/test/network_emulation_manager.h"
#include "api/test/simulated_network.h"
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/ip_address.h"
#include "rtc_base/logging.h"
#include "rtc_base/task_queue_for_test.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
#include "test/network/network_emulation.h"
#include "test/network/network_emulation_manager.h"
#include "test/network/traffic_route.h"
namespace webrtc {
namespace test {
namespace {
constexpr uint32_t kTestIpAddress = 0xC0A80011; // 192.168.0.17
class CountingReceiver : public EmulatedNetworkReceiverInterface {
public:
void OnPacketReceived(EmulatedIpPacket packet) override {
packets_count_++;
total_packets_size_ += packet.size();
}
std::atomic<int> packets_count_{0};
std::atomic<uint64_t> total_packets_size_{0};
};
struct TrafficCounterFixture {
SimulatedClock clock{0};
CountingReceiver counter;
TaskQueueForTest task_queue_;
EmulatedEndpointImpl endpoint{EmulatedEndpointImpl::Options{
/*id=*/1,
IPAddress(kTestIpAddress),
EmulatedEndpointConfig(),
EmulatedNetworkStatsGatheringMode::kDefault,
},
/*is_enabled=*/true, task_queue_.Get(), &clock};
};
} // namespace
TEST(CrossTrafficTest, TriggerPacketBurst) {
TrafficCounterFixture fixture;
CrossTrafficRouteImpl traffic(&fixture.clock, &fixture.counter,
&fixture.endpoint);
traffic.TriggerPacketBurst(100, 1000);
EXPECT_EQ(fixture.counter.packets_count_, 100);
EXPECT_EQ(fixture.counter.total_packets_size_, 100 * 1000ul);
}
TEST(CrossTrafficTest, PulsedPeaksCrossTraffic) {
TrafficCounterFixture fixture;
CrossTrafficRouteImpl traffic(&fixture.clock, &fixture.counter,
&fixture.endpoint);
PulsedPeaksConfig config;
config.peak_rate = DataRate::KilobitsPerSec(1000);
config.min_packet_size = DataSize::Bytes(1);
config.min_packet_interval = TimeDelta::Millis(25);
config.send_duration = TimeDelta::Millis(500);
config.hold_duration = TimeDelta::Millis(250);
PulsedPeaksCrossTraffic pulsed_peaks(config, &traffic);
const auto kRunTime = TimeDelta::Seconds(1);
while (fixture.clock.TimeInMilliseconds() < kRunTime.ms()) {
pulsed_peaks.Process(Timestamp::Millis(fixture.clock.TimeInMilliseconds()));
fixture.clock.AdvanceTimeMilliseconds(1);
}
RTC_LOG(LS_INFO) << fixture.counter.packets_count_ << " packets; "
<< fixture.counter.total_packets_size_ << " bytes";
// Using 50% duty cycle.
const auto kExpectedDataSent = kRunTime * config.peak_rate * 0.5;
EXPECT_NEAR(fixture.counter.total_packets_size_, kExpectedDataSent.bytes(),
kExpectedDataSent.bytes() * 0.1);
}
TEST(CrossTrafficTest, RandomWalkCrossTraffic) {
TrafficCounterFixture fixture;
CrossTrafficRouteImpl traffic(&fixture.clock, &fixture.counter,
&fixture.endpoint);
RandomWalkConfig config;
config.peak_rate = DataRate::KilobitsPerSec(1000);
config.min_packet_size = DataSize::Bytes(1);
config.min_packet_interval = TimeDelta::Millis(25);
config.update_interval = TimeDelta::Millis(500);
config.variance = 0.0;
config.bias = 1.0;
RandomWalkCrossTraffic random_walk(config, &traffic);
const auto kRunTime = TimeDelta::Seconds(1);
while (fixture.clock.TimeInMilliseconds() < kRunTime.ms()) {
random_walk.Process(Timestamp::Millis(fixture.clock.TimeInMilliseconds()));
fixture.clock.AdvanceTimeMilliseconds(1);
}
RTC_LOG(LS_INFO) << fixture.counter.packets_count_ << " packets; "
<< fixture.counter.total_packets_size_ << " bytes";
// Sending at peak rate since bias = 1.
const auto kExpectedDataSent = kRunTime * config.peak_rate;
EXPECT_NEAR(fixture.counter.total_packets_size_, kExpectedDataSent.bytes(),
kExpectedDataSent.bytes() * 0.1);
}
TEST(TcpMessageRouteTest, DeliveredOnLossyNetwork) {
NetworkEmulationManagerImpl net({.time_mode = TimeMode::kSimulated});
BuiltInNetworkBehaviorConfig send;
// 800 kbps means that the 100 kB message would be delivered in ca 1 second
// under ideal conditions and no overhead.
send.link_capacity = DataRate::KilobitsPerSec(100 * 8);
send.loss_percent = 50;
send.queue_delay_ms = 100;
send.delay_standard_deviation_ms = 20;
send.allow_reordering = true;
auto ret = send;
ret.loss_percent = 10;
auto* tcp_route =
net.CreateTcpRoute(net.CreateRoute({net.CreateEmulatedNode(send)}),
net.CreateRoute({net.CreateEmulatedNode(ret)}));
int deliver_count = 0;
// 100 kB is more than what fits into a single packet.
constexpr size_t kMessageSize = 100000;
tcp_route->SendMessage(kMessageSize, [&] {
RTC_LOG(LS_INFO) << "Received at " << ToString(net.Now());
deliver_count++;
});
// If there was no loss, we would have delivered the message in ca 1 second,
// with 50% it should take much longer.
net.time_controller()->AdvanceTime(TimeDelta::Seconds(5));
ASSERT_EQ(deliver_count, 0);
// But given enough time the messsage will be delivered, but only once.
net.time_controller()->AdvanceTime(TimeDelta::Seconds(60));
EXPECT_EQ(deliver_count, 1);
}
} // namespace test
} // namespace webrtc
|