File: simulated_network_unittest.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (682 lines) | stat: -rw-r--r-- 30,503 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
 *  Copyright 2022 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "test/network/simulated_network.h"

#include <cstddef>
#include <cstdint>
#include <optional>
#include <vector>

#include "api/test/simulated_network.h"
#include "api/units/data_rate.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "test/gmock.h"
#include "test/gtest.h"

namespace webrtc {
namespace {

using ::testing::ElementsAre;
using ::testing::MockFunction;
using ::testing::SizeIs;

PacketInFlightInfo PacketWithSize(size_t size) {
  return PacketInFlightInfo(/*size=*/size, /*send_time_us=*/0, /*packet_id=*/1);
}

TEST(SimulatedNetworkTest, NextDeliveryTimeIsUnknownOnEmptyNetwork) {
  SimulatedNetwork network = SimulatedNetwork({});
  EXPECT_EQ(network.NextDeliveryTimeUs(), std::nullopt);
}

TEST(SimulatedNetworkTest, EnqueueFirstPacketOnNetworkWithInfiniteCapacity) {
  // A packet of 1 kB that gets enqueued on a network with infinite capacity
  // should be ready to exit the network immediately.
  SimulatedNetwork network = SimulatedNetwork({});
  ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(1'000)));

  EXPECT_EQ(network.NextDeliveryTimeUs(), 0);
}

TEST(SimulatedNetworkTest, EnqueueFirstPacketOnNetworkWithLimitedCapacity) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity
  // should be ready to exit the network in 1 second.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125)));

  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());
}

TEST(SimulatedNetworkTest,
     EnqueuePacketsButNextDeliveryIsBasedOnFirstEnqueuedPacket) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity
  // should be ready to exit the network in 1 second.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1)));
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());

  // Enqueuing another packet after 100 us doesn't change the next delivery
  // time.
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/100, /*packet_id=*/2)));
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());

  // Enqueuing another packet after 2 seconds doesn't change the next delivery
  // time since the first packet has not left the network yet.
  ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo(
      /*size=*/125, /*send_time_us=*/TimeDelta::Seconds(2).us(),
      /*packet_id=*/3)));
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());
}

TEST(SimulatedNetworkTest, EnqueueFailsWhenQueueLengthIsReached) {
  SimulatedNetwork network =
      SimulatedNetwork({.queue_length_packets = 1,
                        .link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1)));

  // Until there is 1 packet in the queue, no other packets can be enqueued,
  // the only way to make space for new packets is calling
  // DequeueDeliverablePackets at a time greater than or equal to
  // NextDeliveryTimeUs.
  EXPECT_FALSE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125,
                         /*send_time_us=*/TimeDelta::Seconds(0.5).us(),
                         /*packet_id=*/2)));

  // Even if the send_time_us is after NextDeliveryTimeUs, it is still not
  // possible to enqueue a new packet since the client didn't deque any packet
  // from the queue (in this case the client is introducing unbounded delay but
  // the network cannot do anything about it).
  EXPECT_FALSE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125,
                         /*send_time_us=*/TimeDelta::Seconds(2).us(),
                         /*packet_id=*/3)));
}

TEST(SimulatedNetworkTest, PacketOverhead) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity
  // should be ready to exit the network in 1 second, but since there is an
  // overhead per packet of 125 bytes, it will exit the network after 2 seconds.
  SimulatedNetwork network = SimulatedNetwork(
      {.link_capacity = DataRate::KilobitsPerSec(1), .packet_overhead = 125});
  ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125)));

  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(2).us());
}

TEST(SimulatedNetworkTest,
     DequeueDeliverablePacketsLeavesPacketsInCapacityLink) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity
  // should be ready to exit the network in 1 second.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1)));
  // Enqueue another packet of 125 bytes (this one should exit after 2 seconds).
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125,
                         /*send_time_us=*/TimeDelta::Seconds(1).us(),
                         /*packet_id=*/2)));

  // The first packet will exit after 1 second, so that is the next delivery
  // time.
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());

  // After 1 seconds, we collect the delivered packets...
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(1).us());
  ASSERT_EQ(delivered_packets.size(), 1ul);
  EXPECT_EQ(delivered_packets[0].packet_id, 1ul);
  EXPECT_EQ(delivered_packets[0].receive_time_us, TimeDelta::Seconds(1).us());

  // ... And after the first enqueued packet has left the network, the next
  // delivery time reflects the delivery time of the next packet.
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(2).us());
}

TEST(SimulatedNetworkTest,
     DequeueDeliverablePacketsAppliesConfigChangesToCapacityLink) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity
  // should be ready to exit the network in 1 second.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  const PacketInFlightInfo packet_1 =
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1);
  ASSERT_TRUE(network.EnqueuePacket(packet_1));

  // Enqueue another packet of 125 bytes with send time 1 second so this should
  // exit after 2 seconds.
  PacketInFlightInfo packet_2 =
      PacketInFlightInfo(/*size=*/125,
                         /*send_time_us=*/TimeDelta::Seconds(1).us(),
                         /*packet_id=*/2);
  ASSERT_TRUE(network.EnqueuePacket(packet_2));

  // The first packet will exit after 1 second, so that is the next delivery
  // time.
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());

  // Since the link capacity changes from 1 kbps to 10 kbps, packets will take
  // 100 ms each to leave the network.
  network.SetConfig({.link_capacity = DataRate::KilobitsPerSec(10)});

  // The next delivery time doesn't change (it will be updated, if needed at
  // DequeueDeliverablePackets time).
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());

  // Getting the first enqueued packet after 100 ms.
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Millis(100).us());
  ASSERT_EQ(delivered_packets.size(), 1ul);
  EXPECT_THAT(delivered_packets,
              ElementsAre(PacketDeliveryInfo(
                  /*source=*/packet_1,
                  /*receive_time_us=*/TimeDelta::Millis(100).us())));

  // Getting the second enqueued packet that cannot be delivered before its send
  // time, hence it will be delivered after 1.1 seconds.
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(1100).us());
  delivered_packets = network.DequeueDeliverablePackets(
      /*receive_time_us=*/TimeDelta::Millis(1100).us());
  ASSERT_EQ(delivered_packets.size(), 1ul);
  EXPECT_THAT(delivered_packets,
              ElementsAre(PacketDeliveryInfo(
                  /*source=*/packet_2,
                  /*receive_time_us=*/TimeDelta::Millis(1100).us())));
}

TEST(SimulatedNetworkTest,
     SetConfigUpdateNextDeliveryTimeIfLinkCapacityChange) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity
  // should be ready to exit the network in 1 second.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  MockFunction<void()> delivery_time_changed_callback;
  network.RegisterDeliveryTimeChangedCallback(
      delivery_time_changed_callback.AsStdFunction());
  const PacketInFlightInfo packet_1 =
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1);
  ASSERT_TRUE(network.EnqueuePacket(packet_1));
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());

  // Since the link capacity changes from 1 kbps to 10 kbps, packets will take
  // 100 ms each to leave the network. After 500ms, half the packet should have
  // gone through.
  EXPECT_CALL(delivery_time_changed_callback, Call).WillOnce([&]() {
    EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(500 + 50).us());
  });
  network.SetConfig({.link_capacity = DataRate::KilobitsPerSec(10)},
                    /*config_update_time*/ Timestamp::Millis(500));
}

TEST(SimulatedNetworkTest,
     SetConfigUpdateNextDeliveryTimeIfLinkCapacityChangeFromZero) {
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::Zero()});
  MockFunction<void()> delivery_time_changed_callback;
  network.RegisterDeliveryTimeChangedCallback(
      delivery_time_changed_callback.AsStdFunction());
  const PacketInFlightInfo packet_1 =
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1);
  const PacketInFlightInfo packet_2 =
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/2);
  ASSERT_TRUE(network.EnqueuePacket(packet_1));
  ASSERT_TRUE(network.EnqueuePacket(packet_2));
  EXPECT_FALSE(network.NextDeliveryTimeUs().has_value());

  // The link capacity changes from 0 kbps to 10 kbps during 10ms 1/10th of the
  // packet will be transmitted. (The packet would take 100ms to go through the
  // network at 10kbps.)
  ::testing::Sequence s;
  EXPECT_CALL(delivery_time_changed_callback, Call)
      .InSequence(s)
      .WillOnce([&]() {
        EXPECT_EQ(network.NextDeliveryTimeUs(),
                  TimeDelta::Millis(500 + 100).us());
      });
  EXPECT_CALL(delivery_time_changed_callback, Call)
      .InSequence(s)
      .WillOnce(
          [&]() { EXPECT_FALSE(network.NextDeliveryTimeUs().has_value()); });
  EXPECT_CALL(delivery_time_changed_callback, Call)
      .InSequence(s)
      .WillOnce([&]() {
        EXPECT_EQ(network.NextDeliveryTimeUs(),
                  TimeDelta::Millis(610 + 90).us());
      });
  network.SetConfig({.link_capacity = DataRate::KilobitsPerSec(10)},
                    /*config_update_time*/ Timestamp::Millis(500));
  network.SetConfig({.link_capacity = DataRate::Zero()},
                    /*config_update_time*/ Timestamp::Millis(510));
  network.SetConfig({.link_capacity = DataRate::KilobitsPerSec(10)},
                    /*config_update_time*/ Timestamp::Millis(610));
}

TEST(SimulatedNetworkTest, SetConfigUpdateQueueDelayAfterDelivery) {
  // A packet of 125 bytes that gets enqueued on a network with 1000 kbps
  // capacity should be ready to exit the narrow section in 1 ms.
  SimulatedNetwork network =
      SimulatedNetwork({.queue_delay_ms = 1000,
                        .link_capacity = DataRate::KilobitsPerSec(1000)});
  MockFunction<void()> delivery_time_changed_callback;
  network.RegisterDeliveryTimeChangedCallback(
      delivery_time_changed_callback.AsStdFunction());
  EXPECT_CALL(delivery_time_changed_callback, Call).Times(0);
  const PacketInFlightInfo packet_1 =
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1);
  ASSERT_TRUE(network.EnqueuePacket(packet_1));
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(1).us());
  // But no packets is actually delivered. Only moved to the delay link.
  EXPECT_TRUE(network
                  .DequeueDeliverablePackets(
                      /*receive_time_us=*/TimeDelta::Millis(1).us())
                  .empty());
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(1000 + 1).us());

  // Changing the queue time does not change the next delivery time.
  network.SetConfig(
      {.queue_delay_ms = 1, .link_capacity = DataRate::KilobitsPerSec(100)},
      /*config_update_time*/ Timestamp::Millis(500));
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(1000 + 1).us());

  // A new packet require NextDeliveryTimeUs to change since the capacity
  // change. But does not affect the delivery time of packet_1.
  const PacketInFlightInfo packet_2 = PacketInFlightInfo(
      /*size=*/125, /*send_time_us=*/TimeDelta::Millis(500).us(),
      /*packet_id=*/2);
  ASSERT_TRUE(network.EnqueuePacket(packet_2));
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(1000 + 1).us());
  // At 100kbps, it will take packet 2 10ms to pass through the narrow section.
  // Since delay is lower for packet_2, but reordering is not allowed, both
  // packets are delivered at the same time.
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Millis(1000 + 1).us());
  ASSERT_THAT(delivered_packets, SizeIs(2));
  EXPECT_EQ(delivered_packets[0].receive_time_us,
            delivered_packets[1].receive_time_us);
}

TEST(SimulatedNetworkTest, NetworkEmptyAfterLastPacketDequeued) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps
  // capacity should be ready to exit the network in 1 second.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125)));

  // Collecting all the delivered packets ...
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(1).us());
  EXPECT_EQ(delivered_packets.size(), 1ul);

  // ... leaves the network empty.
  EXPECT_EQ(network.NextDeliveryTimeUs(), std::nullopt);
}

TEST(SimulatedNetworkTest, DequeueDeliverablePacketsOnLateCall) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps
  // capacity should be ready to exit the network in 1 second.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1)));

  // Enqueue another packet of 125 bytes with send time 1 second so this
  // should exit after 2 seconds.
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125,
                         /*send_time_us=*/TimeDelta::Seconds(1).us(),
                         /*packet_id=*/2)));

  // Collecting delivered packets after 3 seconds will result in the delivery
  // of both the enqueued packets.
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(3).us());
  EXPECT_EQ(delivered_packets.size(), 2ul);
}

TEST(SimulatedNetworkTest,
     DequeueDeliverablePacketsOnEarlyCallReturnsNoPackets) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps
  // capacity should be ready to exit the network in 1 second.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125)));

  // Collecting delivered packets after 0.5 seconds will result in the
  // delivery of 0 packets.
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(0.5).us());
  EXPECT_EQ(delivered_packets.size(), 0ul);

  // Since the first enqueued packet was supposed to exit after 1 second.
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());
}

TEST(SimulatedNetworkTest, QueueDelayMsWithoutStandardDeviation) {
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps
  // capacity should be ready to exit the network in 1 second.
  SimulatedNetwork network = SimulatedNetwork(
      {.queue_delay_ms = 100, .link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125)));
  // The next delivery time is still 1 second even if there are 100 ms of
  // extra delay but this will be applied at DequeueDeliverablePackets time.
  ASSERT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());

  // Since all packets are delayed by 100 ms, after 1 second, no packets will
  // exit the network.
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(1).us());
  EXPECT_EQ(delivered_packets.size(), 0ul);

  // And the updated next delivery time takes into account the extra delay of
  // 100 ms so the first packet in the network will be delivered after 1.1
  // seconds.
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(1100).us());
  delivered_packets = network.DequeueDeliverablePackets(
      /*receive_time_us=*/TimeDelta::Millis(1100).us());
  EXPECT_EQ(delivered_packets.size(), 1ul);
}

TEST(SimulatedNetworkTest,
     QueueDelayMsWithStandardDeviationAndReorderNotAllowed) {
  SimulatedNetwork network =
      SimulatedNetwork({.queue_delay_ms = 100,
                        .delay_standard_deviation_ms = 90,
                        .link_capacity = DataRate::KilobitsPerSec(1),
                        .allow_reordering = false});
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps
  // capacity should be ready to exit the network in 1 second.
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1)));

  // But 3 more packets of size 1 byte are enqueued at the same time.
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/2)));
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/3)));
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/4)));

  // After 5 seconds all of them exit the network.
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(5).us());
  ASSERT_EQ(delivered_packets.size(), 4ul);

  // And they are still in order even if the delay was applied.
  EXPECT_EQ(delivered_packets[0].packet_id, 1ul);
  EXPECT_EQ(delivered_packets[1].packet_id, 2ul);
  EXPECT_GE(delivered_packets[1].receive_time_us,
            delivered_packets[0].receive_time_us);
  EXPECT_EQ(delivered_packets[2].packet_id, 3ul);
  EXPECT_GE(delivered_packets[2].receive_time_us,
            delivered_packets[1].receive_time_us);
  EXPECT_EQ(delivered_packets[3].packet_id, 4ul);
  EXPECT_GE(delivered_packets[3].receive_time_us,
            delivered_packets[2].receive_time_us);
}

TEST(SimulatedNetworkTest, QueueDelayMsWithStandardDeviationAndReorderAllowed) {
  SimulatedNetwork network =
      SimulatedNetwork({.queue_delay_ms = 100,
                        .delay_standard_deviation_ms = 90,
                        .link_capacity = DataRate::KilobitsPerSec(1),
                        .allow_reordering = true},
                       /*random_seed=*/1);
  // A packet of 125 bytes that gets enqueued on a network with 1 kbps
  // capacity should be ready to exit the network in 1 second.
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1)));

  // But 3 more packets of size 1 byte are enqueued at the same time.
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/2)));
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/3)));
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/4)));

  // After 5 seconds all of them exit the network.
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(5).us());
  ASSERT_EQ(delivered_packets.size(), 4ul);

  // And they have been reordered accorting to the applied extra delay.
  EXPECT_EQ(delivered_packets[0].packet_id, 3ul);
  EXPECT_EQ(delivered_packets[1].packet_id, 1ul);
  EXPECT_GE(delivered_packets[1].receive_time_us,
            delivered_packets[0].receive_time_us);
  EXPECT_EQ(delivered_packets[2].packet_id, 2ul);
  EXPECT_GE(delivered_packets[2].receive_time_us,
            delivered_packets[1].receive_time_us);
  EXPECT_EQ(delivered_packets[3].packet_id, 4ul);
  EXPECT_GE(delivered_packets[3].receive_time_us,
            delivered_packets[2].receive_time_us);
}

TEST(SimulatedNetworkTest, PacketLoss) {
  // On a network with 50% probability of packet loss ...
  SimulatedNetwork network =
      SimulatedNetwork({.loss_percent = 50}, /*random_seed =*/1);

  // Enqueueing 8 packets ...
  for (int i = 0; i < 8; i++) {
    ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo(
        /*size=*/1, /*send_time_us=*/0, /*packet_id=*/i + 1)));
  }

  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(5).us());
  EXPECT_EQ(delivered_packets.size(), 8ul);

  // Results in the loss of 4 of them.
  int lost_packets = 0;
  for (const auto& packet : delivered_packets) {
    if (packet.receive_time_us == PacketDeliveryInfo::kNotReceived) {
      lost_packets++;
    }
  }
  EXPECT_EQ(lost_packets, 4);
}

TEST(SimulatedNetworkTest, NextDeliveryTimeSetAfterLostPackets) {
  // On a network with 50% probablility of packet loss ...
  SimulatedNetwork network =
      SimulatedNetwork({.queue_delay_ms = 10,
                        .link_capacity = DataRate::KilobitsPerSec(1000),
                        .loss_percent = 50},
                       /*random_seed =*/1);
  // Enqueueing 8 packets at the same time. It should take 1ms to pass through
  // the capacity limited section per packet, it total adding 8ms delay to the
  // last packet. Since queue delay is 10ms, multiple packets will be in the
  // delay queue at the same time.
  for (int i = 0; i < 8; i++) {
    ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo(
        /*size=*/125, /*send_time_us=*/0, /*packet_id=*/i + 1)));
  }
  int64_t time_us = 0;
  std::vector<PacketDeliveryInfo> delivered_packets;
  // This assumes first packet is lost and last packet is delivered....
  while (delivered_packets.size() != 8) {
    ASSERT_TRUE(network.NextDeliveryTimeUs().has_value());
    time_us = *network.NextDeliveryTimeUs();
    std::vector<PacketDeliveryInfo> packets =
        network.DequeueDeliverablePackets(time_us);
    delivered_packets.insert(delivered_packets.end(), packets.begin(),
                             packets.end());
  }
  // Results in the loss of 4 of them.
  int lost_packets = 0;
  int received_packets = 0;
  for (const auto& packet : delivered_packets) {
    if (packet.receive_time_us == PacketDeliveryInfo::kNotReceived) {
      lost_packets++;
    } else {
      received_packets++;
    }
  }
  EXPECT_EQ(delivered_packets.back().receive_time_us,
            Timestamp::Millis(10 + 8).us());
  EXPECT_EQ(lost_packets, 4);
  EXPECT_EQ(received_packets, 4);
}

TEST(SimulatedNetworkTest, PacketLossBurst) {
  // On a network with 50% probability of packet loss and an average burst
  // loss length of 100 ...
  SimulatedNetwork network = SimulatedNetwork(
      {.loss_percent = 50, .avg_burst_loss_length = 100}, /*random_seed=*/1);

  // Enqueueing 20 packets ...
  for (int i = 0; i < 20; i++) {
    ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo(
        /*size=*/1, /*send_time_us=*/0, /*packet_id=*/i + 1)));
  }

  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(5).us());
  EXPECT_EQ(delivered_packets.size(), 20ul);

  // Results in a burst of lost packets after the first packet lost.
  // With the current random seed, the first 12 are not lost, while the
  // last 8 are.
  int current_packet = 0;
  for (const auto& packet : delivered_packets) {
    if (current_packet < 12) {
      EXPECT_NE(packet.receive_time_us, PacketDeliveryInfo::kNotReceived);
      current_packet++;
    } else {
      EXPECT_EQ(packet.receive_time_us, PacketDeliveryInfo::kNotReceived);
      current_packet++;
    }
  }
}

TEST(SimulatedNetworkTest, PauseTransmissionUntil) {
  // 3 packets of 125 bytes that gets enqueued on a network with 1 kbps
  // capacity should be ready to exit the network after 1, 2 and 3 seconds
  // respectively.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1)));
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/2)));
  ASSERT_TRUE(network.EnqueuePacket(
      PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/3)));
  ASSERT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us());

  // The network gets paused for 5 seconds, which means that the first packet
  // can exit after 5 seconds instead of 1 second.
  network.PauseTransmissionUntil(TimeDelta::Seconds(5).us());

  // No packets after 1 second.
  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(1).us());
  EXPECT_EQ(delivered_packets.size(), 0ul);
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(5).us());

  // The first packet exits after 5 seconds.
  delivered_packets = network.DequeueDeliverablePackets(
      /*receive_time_us=*/TimeDelta::Seconds(5).us());
  EXPECT_EQ(delivered_packets.size(), 1ul);

  // After the first packet is exited, the next delivery time reflects the
  // delivery time of the next packet which accounts for the network pause.
  EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(6).us());

  // And 2 seconds after the exit of the first enqueued packet, the following
  // 2 packets are also delivered.
  delivered_packets = network.DequeueDeliverablePackets(
      /*receive_time_us=*/TimeDelta::Seconds(7).us());
  EXPECT_EQ(delivered_packets.size(), 2ul);
}

TEST(SimulatedNetworkTest, CongestedNetworkRespectsLinkCapacity) {
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  for (size_t i = 0; i < 1'000; ++i) {
    ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo(
        /*size=*/125, /*send_time_us=*/0, /*packet_id=*/i)));
  }
  PacketDeliveryInfo last_delivered_packet{
      PacketInFlightInfo(/*size=*/0, /*send_time_us=*/0, /*packet_id=*/0), 0};
  while (network.NextDeliveryTimeUs().has_value()) {
    std::vector<PacketDeliveryInfo> delivered_packets =
        network.DequeueDeliverablePackets(
            /*receive_time_us=*/network.NextDeliveryTimeUs().value());
    if (!delivered_packets.empty()) {
      last_delivered_packet = delivered_packets.back();
    }
  }
  // 1000 packets of 1000 bits each will take 1000 seconds to exit a 1 kpbs
  // network.
  EXPECT_EQ(last_delivered_packet.receive_time_us,
            TimeDelta::Seconds(1000).us());
  EXPECT_EQ(last_delivered_packet.packet_id, 999ul);
}

TEST(SimulatedNetworkTest, EnqueuePacketWithSubSecondNonMonotonicBehaviour) {
  // On multi-core systems, different threads can experience sub-millisecond
  // non monothonic behaviour when running on different cores. This test
  // checks that when a non monotonic packet enqueue, the network continues to
  // work and the out of order packet is sent anyway.
  SimulatedNetwork network =
      SimulatedNetwork({.link_capacity = DataRate::KilobitsPerSec(1)});
  ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo(
      /*size=*/125, /*send_time_us=*/TimeDelta::Seconds(1).us(),
      /*packet_id=*/0)));
  ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo(
      /*size=*/125, /*send_time_us=*/TimeDelta::Seconds(1).us() - 1,
      /*packet_id=*/1)));

  std::vector<PacketDeliveryInfo> delivered_packets =
      network.DequeueDeliverablePackets(
          /*receive_time_us=*/TimeDelta::Seconds(2).us());
  ASSERT_EQ(delivered_packets.size(), 1ul);
  EXPECT_EQ(delivered_packets[0].packet_id, 0ul);
  EXPECT_EQ(delivered_packets[0].receive_time_us, TimeDelta::Seconds(2).us());

  delivered_packets = network.DequeueDeliverablePackets(
      /*receive_time_us=*/TimeDelta::Seconds(3).us());
  ASSERT_EQ(delivered_packets.size(), 1ul);
  EXPECT_EQ(delivered_packets[0].packet_id, 1ul);
  EXPECT_EQ(delivered_packets[0].receive_time_us, TimeDelta::Seconds(3).us());
}

// TODO(bugs.webrtc.org/14525): Re-enable when the DCHECK will be uncommented
// and the non-monotonic events on real time clock tests is solved/understood.
// TEST(SimulatedNetworkDeathTest, EnqueuePacketExpectMonotonicSendTime) {
//   SimulatedNetwork network = SimulatedNetwork({.link_capacity =
//   DataRate::KilobitsPerSec(1)});
//   ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo(
//       /*size=*/125, /*send_time_us=*/2'000'000, /*packet_id=*/0)));
//   EXPECT_DEATH_IF_SUPPORTED(network.EnqueuePacket(PacketInFlightInfo(
//       /*size=*/125, /*send_time_us=*/900'000, /*packet_id=*/1)), "");
// }
}  // namespace
}  // namespace webrtc