1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/ax_computed_node_data.h"
#include "base/check_op.h"
#include "base/i18n/break_iterator.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "ui/accessibility/accessibility_features.h"
#include "ui/accessibility/ax_enums.mojom.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_node_position.h"
#include "ui/accessibility/ax_position.h"
#include "ui/accessibility/ax_range.h"
#include "ui/accessibility/ax_tree_manager.h"
#include "ui/accessibility/ax_tree_manager_map.h"
namespace ui {
AXComputedNodeData::AXComputedNodeData(const AXNode& node) : owner_(&node) {}
AXComputedNodeData::~AXComputedNodeData() = default;
int AXComputedNodeData::GetOrComputeUnignoredIndexInParent() const {
DCHECK(!owner_->IsIgnored())
<< "Ignored nodes cannot have an `unignored index in parent`.\n"
<< *owner_;
if (unignored_index_in_parent_)
return *unignored_index_in_parent_;
if (const AXNode* unignored_parent = SlowGetUnignoredParent()) {
DCHECK_NE(unignored_parent->id(), kInvalidAXNodeID)
<< "All nodes should have a valid ID.\n"
<< *owner_;
unignored_parent->GetComputedNodeData().ComputeUnignoredValues();
} else {
// This should be the root node and, by convention, we assign it an
// index-in-parent of 0.
unignored_index_in_parent_ = 0;
unignored_parent_id_ = kInvalidAXNodeID;
}
return *unignored_index_in_parent_;
}
AXNodeID AXComputedNodeData::GetOrComputeUnignoredParentID() const {
if (unignored_parent_id_)
return *unignored_parent_id_;
if (const AXNode* unignored_parent = SlowGetUnignoredParent()) {
DCHECK_NE(unignored_parent->id(), kInvalidAXNodeID)
<< "All nodes should have a valid ID.\n"
<< *owner_;
unignored_parent_id_ = unignored_parent->id();
} else {
// This should be the root node and, by convention, we assign it an
// index-in-parent of 0.
DCHECK(!owner_->GetParent())
<< "If `unignored_parent` is nullptr, then this should be the "
"rootnode, since in all trees the rootnode should be unignored.\n"
<< *owner_;
unignored_index_in_parent_ = 0;
unignored_parent_id_ = kInvalidAXNodeID;
}
return *unignored_parent_id_;
}
AXNode* AXComputedNodeData::GetOrComputeUnignoredParent() const {
DCHECK(owner_->tree())
<< "All nodes should be owned by an accessibility tree.\n"
<< *owner_;
return owner_->tree()->GetFromId(GetOrComputeUnignoredParentID());
}
int AXComputedNodeData::GetOrComputeUnignoredChildCount() const {
DCHECK(!owner_->IsIgnored())
<< "Ignored nodes cannot have an `unignored child count`.\n"
<< *owner_;
if (!unignored_child_count_)
ComputeUnignoredValues();
return *unignored_child_count_;
}
const std::vector<AXNodeID>& AXComputedNodeData::GetOrComputeUnignoredChildIDs()
const {
DCHECK(!owner_->IsIgnored())
<< "Ignored nodes cannot have `unignored child IDs`.\n"
<< *owner_;
if (!unignored_child_ids_)
ComputeUnignoredValues();
return *unignored_child_ids_;
}
bool AXComputedNodeData::GetOrComputeIsDescendantOfPlatformLeaf() const {
if (!is_descendant_of_leaf_)
ComputeIsDescendantOfPlatformLeaf();
return *is_descendant_of_leaf_;
}
const std::string& AXComputedNodeData::ComputeAttributeUTF8(
const ax::mojom::StringAttribute attribute) const {
DCHECK(owner_->CanComputeStringAttribute(attribute));
switch (attribute) {
case ax::mojom::StringAttribute::kValue:
return GetOrComputeTextContentWithParagraphBreaksUTF8();
case ax::mojom::StringAttribute::kName:
return GetOrComputeTextContentUTF8();
default:
NOTREACHED();
}
}
std::u16string AXComputedNodeData::ComputeAttributeUTF16(
const ax::mojom::StringAttribute attribute) const {
DCHECK(owner_->CanComputeStringAttribute(attribute));
switch (attribute) {
case ax::mojom::StringAttribute::kValue:
return GetOrComputeTextContentWithParagraphBreaksUTF16();
case ax::mojom::StringAttribute::kName:
return GetOrComputeTextContentUTF16();
default:
NOTREACHED();
}
}
const std::vector<int32_t>& AXComputedNodeData::ComputeAttribute(
const ax::mojom::IntListAttribute attribute) const {
DCHECK(owner_->CanComputeIntListAttribute(attribute));
switch (attribute) {
case ax::mojom::IntListAttribute::kLineStarts:
ComputeLineOffsetsIfNeeded();
return *line_starts_;
case ax::mojom::IntListAttribute::kLineEnds:
ComputeLineOffsetsIfNeeded();
return *line_ends_;
case ax::mojom::IntListAttribute::kSentenceStarts:
ComputeSentenceOffsetsIfNeeded();
return *sentence_starts_;
case ax::mojom::IntListAttribute::kSentenceEnds:
ComputeSentenceOffsetsIfNeeded();
return *sentence_ends_;
case ax::mojom::IntListAttribute::kWordStarts:
ComputeWordOffsetsIfNeeded();
return *word_starts_;
case ax::mojom::IntListAttribute::kWordEnds:
ComputeWordOffsetsIfNeeded();
return *word_ends_;
default:
NOTREACHED();
}
}
const std::string&
AXComputedNodeData::GetOrComputeTextContentWithParagraphBreaksUTF8() const {
if (!text_content_with_paragraph_breaks_utf8_) {
VLOG_IF(1, text_content_with_paragraph_breaks_utf16_)
<< "Only a single encoding of text content with paragraph breaks "
"should be cached.";
auto range =
AXRange<AXPosition<AXNodePosition, AXNode>>::RangeOfContents(*owner_);
text_content_with_paragraph_breaks_utf8_ = base::UTF16ToUTF8(
range.GetText(AXTextConcatenationBehavior::kWithParagraphBreaks,
AXEmbeddedObjectBehavior::kSuppressCharacter));
}
return *text_content_with_paragraph_breaks_utf8_;
}
const std::u16string&
AXComputedNodeData::GetOrComputeTextContentWithParagraphBreaksUTF16() const {
if (!text_content_with_paragraph_breaks_utf16_) {
VLOG_IF(1, text_content_with_paragraph_breaks_utf8_)
<< "Only a single encoding of text content with paragraph breaks "
"should be cached.";
auto range =
AXRange<AXPosition<AXNodePosition, AXNode>>::RangeOfContents(*owner_);
text_content_with_paragraph_breaks_utf16_ =
range.GetText(AXTextConcatenationBehavior::kWithParagraphBreaks,
AXEmbeddedObjectBehavior::kSuppressCharacter);
}
return *text_content_with_paragraph_breaks_utf16_;
}
const std::string& AXComputedNodeData::GetOrComputeTextContentUTF8() const {
if (!text_content_utf8_) {
VLOG_IF(1, text_content_utf16_)
<< "Only a single encoding of text content should be cached.";
text_content_utf8_ = ComputeTextContentUTF8();
}
return *text_content_utf8_;
}
const std::u16string& AXComputedNodeData::GetOrComputeTextContentUTF16() const {
if (!text_content_utf16_) {
VLOG_IF(1, text_content_utf8_)
<< "Only a single encoding of text content should be cached.";
text_content_utf16_ = ComputeTextContentUTF16();
}
return *text_content_utf16_;
}
int AXComputedNodeData::GetOrComputeTextContentLengthUTF8() const {
return static_cast<int>(GetOrComputeTextContentUTF8().length());
}
int AXComputedNodeData::GetOrComputeTextContentLengthUTF16() const {
if (utf16_length_) {
return utf16_length_.value();
}
if (text_content_utf16_) {
// Used the cached UTF16 representation if we have it already.
utf16_length_ = text_content_utf16_->length();
} else {
// Do not cache the text since used just to extract the length.
utf16_length_ = ComputeTextContentUTF16().length();
}
return utf16_length_.value();
}
bool AXComputedNodeData::CanInferNameAttribute() const {
// The name may be suppressed when serializing an AXInlineTextBox if it
// can be inferred from the parent.
return owner_->data().role == ax::mojom::Role::kInlineTextBox &&
owner_->data().GetNameFrom() == ax::mojom::NameFrom::kContents &&
owner_->GetParent()->data().GetNameFrom() ==
ax::mojom::NameFrom::kContents &&
owner_->GetParent()->data().HasStringAttribute(
ax::mojom::StringAttribute::kName);
}
void AXComputedNodeData::ComputeUnignoredValues(
AXNodeID unignored_parent_id,
int starting_index_in_parent) const {
DCHECK_GE(starting_index_in_parent, 0);
// Reset any previously computed values.
unignored_index_in_parent_ = std::nullopt;
unignored_parent_id_ = std::nullopt;
unignored_child_count_ = std::nullopt;
unignored_child_ids_ = std::nullopt;
AXNodeID unignored_parent_id_for_child = unignored_parent_id;
if (!owner_->IsIgnored())
unignored_parent_id_for_child = owner_->id();
int unignored_child_count = 0;
std::vector<AXNodeID> unignored_child_ids;
for (auto iter = owner_->AllChildrenBegin(); iter != owner_->AllChildrenEnd();
++iter) {
const AXComputedNodeData& computed_data = iter->GetComputedNodeData();
int new_index_in_parent = starting_index_in_parent + unignored_child_count;
if (iter->IsIgnored()) {
// Skip the ignored node and recursively look at its children.
computed_data.ComputeUnignoredValues(unignored_parent_id_for_child,
new_index_in_parent);
DCHECK(computed_data.unignored_child_count_);
unignored_child_count += *computed_data.unignored_child_count_;
DCHECK(computed_data.unignored_child_ids_);
unignored_child_ids.insert(unignored_child_ids.end(),
computed_data.unignored_child_ids_->begin(),
computed_data.unignored_child_ids_->end());
} else {
// Setting `unignored_index_in_parent_` and `unignored_parent_id_` is the
// responsibility of the parent node, since only the parent node can
// calculate these values. This is in contrast to `unignored_child_count_`
// and `unignored_child_ids_` that are only set if this method is called
// on the node itself.
computed_data.unignored_index_in_parent_ = new_index_in_parent;
if (unignored_parent_id_for_child != kInvalidAXNodeID)
computed_data.unignored_parent_id_ = unignored_parent_id_for_child;
++unignored_child_count;
unignored_child_ids.push_back(iter->id());
}
}
if (unignored_parent_id != kInvalidAXNodeID)
unignored_parent_id_ = unignored_parent_id;
// Ignored nodes store unignored child information in order to propagate it to
// their parents, but do not expose it directly. The latter is guarded via a
// DCHECK.
unignored_child_count_ = unignored_child_count;
unignored_child_ids_ = unignored_child_ids;
}
AXNode* AXComputedNodeData::SlowGetUnignoredParent() const {
AXNode* unignored_parent = owner_->GetParent();
while (unignored_parent && unignored_parent->IsIgnored())
unignored_parent = unignored_parent->GetParent();
return unignored_parent;
}
void AXComputedNodeData::ComputeIsDescendantOfPlatformLeaf() const {
is_descendant_of_leaf_ = false;
for (const AXNode* ancestor = GetOrComputeUnignoredParent(); ancestor;
ancestor =
ancestor->GetComputedNodeData().GetOrComputeUnignoredParent()) {
if (ancestor->GetComputedNodeData().is_descendant_of_leaf_.value_or(
false) ||
ancestor->IsLeaf()) {
is_descendant_of_leaf_ = true;
return;
}
}
}
void AXComputedNodeData::ComputeLineOffsetsIfNeeded() const {
DCHECK_EQ(line_starts_.has_value(), line_ends_.has_value());
if (line_starts_) {
DCHECK_EQ(line_starts_->size(), line_ends_->size());
return; // Already cached.
}
line_starts_ = std::vector<int32_t>();
line_ends_ = std::vector<int32_t>();
const std::u16string& text_content = GetOrComputeTextContentUTF16();
if (text_content.empty())
return;
// TODO(nektar): Using the `base::i18n::BreakIterator` class is not enough. We
// also need to pass information from Blink as to which inline text boxes
// start a new line and deprecate next/previous_on_line.
base::i18n::BreakIterator iter(text_content,
base::i18n::BreakIterator::BREAK_NEWLINE);
if (!iter.Init())
return;
while (iter.Advance()) {
line_starts_->push_back(base::checked_cast<int32_t>(iter.prev()));
line_ends_->push_back(base::checked_cast<int32_t>(iter.pos()));
}
}
void AXComputedNodeData::ComputeSentenceOffsetsIfNeeded() const {
DCHECK_EQ(sentence_starts_.has_value(), sentence_ends_.has_value());
if (sentence_starts_) {
DCHECK_EQ(sentence_starts_->size(), sentence_ends_->size());
return; // Already cached.
}
sentence_starts_ = std::vector<int32_t>();
sentence_ends_ = std::vector<int32_t>();
if (owner_->IsLineBreak()) {
return;
}
const std::u16string& text_content = GetOrComputeTextContentUTF16();
if (text_content.empty() ||
base::ContainsOnlyChars(text_content, base::kWhitespaceUTF16)) {
return;
}
// Unlike in ICU, a sentence boundary is not valid in Blink if it falls within
// some whitespace that is used to separate sentences. We therefore need to
// filter the boundaries returned by ICU and return a subset of them. For
// example we should exclude a sentence boundary that is between two space
// characters, "Hello. | there.".
// TODO(nektar): The above is not accomplished simply by using the
// `base::i18n::BreakIterator` class.
base::i18n::BreakIterator iter(text_content,
base::i18n::BreakIterator::BREAK_SENTENCE);
if (!iter.Init())
return;
while (iter.Advance()) {
sentence_starts_->push_back(base::checked_cast<int32_t>(iter.prev()));
sentence_ends_->push_back(base::checked_cast<int32_t>(iter.pos()));
}
}
void AXComputedNodeData::ComputeWordOffsetsIfNeeded() const {
DCHECK_EQ(word_starts_.has_value(), word_ends_.has_value());
if (word_starts_) {
DCHECK_EQ(word_starts_->size(), word_ends_->size());
return; // Already cached.
}
word_starts_ = std::vector<int32_t>();
word_ends_ = std::vector<int32_t>();
const std::u16string& text_content = GetOrComputeTextContentUTF16();
if (text_content.empty())
return;
// Unlike in ICU, a word boundary is valid in Blink only if it is before, or
// immediately preceded by, an alphanumeric character, a series of punctuation
// marks, an underscore or a line break. We therefore need to filter the
// boundaries returned by ICU and return a subset of them. For example we
// should exclude a word boundary that is between two space characters, "Hello
// | there".
// TODO(nektar): Fix the fact that the `base::i18n::BreakIterator` class does
// not take into account underscores as word separators.
base::i18n::BreakIterator iter(text_content,
base::i18n::BreakIterator::BREAK_WORD);
if (!iter.Init())
return;
while (iter.Advance()) {
if (iter.IsWord()) {
word_starts_->push_back(base::checked_cast<int>(iter.prev()));
word_ends_->push_back(base::checked_cast<int>(iter.pos()));
}
}
}
std::string AXComputedNodeData::ComputeTextContentUTF8() const {
// Name is omitted from an inline text if an only child since its value is
// the same as the parent. We can differentiate this case from a specified
// but empty name based on the name from attribute, which is kFromContent if
// set and kNone if the text content is to be inferred from the parent.
if (owner_->data().role == ax::mojom::Role::kInlineTextBox &&
!owner_->data().HasStringAttribute(ax::mojom::StringAttribute::kName)) {
return owner_->GetParent()->data().GetStringAttribute(
ax::mojom::StringAttribute::kName);
}
// If a text field has no descendants, then we compute its text content from
// its value or its placeholder. Otherwise we prefer to look at its descendant
// text nodes because Blink doesn't always add all trailing white space to the
// value attribute.
const bool is_atomic_text_field_without_descendants =
(owner_->data().IsTextField() && !owner_->GetUnignoredChildCount());
if (is_atomic_text_field_without_descendants) {
std::string value =
owner_->data().GetStringAttribute(ax::mojom::StringAttribute::kValue);
// If the value is empty, then there might be some placeholder text in the
// text field, or any other name that is derived from visible contents, even
// if the text field has no children, so we treat this as any other leaf
// node.
if (!value.empty())
return value;
}
// Ordinarily, atomic text fields are leaves, and for all leaves we directly
// retrieve their text content using the information provided by the tree
// source, such as Blink. However, for atomic text fields we need to exclude
// them from the set of leaf nodes when they expose any descendants. This is
// because we want to compute their text content from their descendant text
// nodes as we don't always trust the "value" attribute provided by Blink.
const bool is_atomic_text_field_with_descendants =
(owner_->data().IsTextField() && owner_->GetUnignoredChildCount());
if (owner_->IsLeaf() && !is_atomic_text_field_with_descendants) {
switch (owner_->data().GetNameFrom()) {
case ax::mojom::NameFrom::kNone:
// The accessible name is not displayed on screen, e.g. aria-label, or is
// not displayed directly inside the node, e.g. an associated label
// element.
case ax::mojom::NameFrom::kAttribute:
// The node's accessible name is explicitly empty.
case ax::mojom::NameFrom::kAttributeExplicitlyEmpty:
// The accessible name does not represent the entirety of the node's text
// content, e.g. a table's caption or a figure's figcaption.
case ax::mojom::NameFrom::kCaption:
// The name comes from CSS alt text.
case ax::mojom::NameFrom::kCssAltText:
// The object should not have an accessible name according to ARIA 1.2.
// If kProhibited is set, that means we calculated a name in Blink and
// are deliberately not exposing it.
case ax::mojom::NameFrom::kProhibited:
case ax::mojom::NameFrom::kProhibitedAndRedundant:
case ax::mojom::NameFrom::kRelatedElement:
// The accessible name is not displayed directly inside the node but is
// visible via e.g. a tooltip.
case ax::mojom::NameFrom::kTitle:
case ax::mojom::NameFrom::kPopoverTarget:
case ax::mojom::NameFrom::kInterestTarget:
return std::string();
case ax::mojom::NameFrom::kContents:
// The placeholder text is initially displayed inside the text field and
// takes the place of its value.
case ax::mojom::NameFrom::kPlaceholder:
// The value attribute takes the place of the node's text content, e.g.
// the value of a submit button is displayed inside the button itself.
case ax::mojom::NameFrom::kValue:
return owner_->data().GetStringAttribute(
ax::mojom::StringAttribute::kName);
}
}
std::string text_content;
for (auto it = owner_->UnignoredChildrenCrossingTreeBoundaryBegin();
it != owner_->UnignoredChildrenCrossingTreeBoundaryEnd(); ++it) {
text_content += it->GetTextContentUTF8();
}
return text_content;
}
std::u16string AXComputedNodeData::ComputeTextContentUTF16() const {
return base::UTF8ToUTF16(ComputeTextContentUTF8());
}
} // namespace ui
|