1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/ax_tree.h"
#include <stddef.h>
#include <numeric>
#include <tuple>
#include <utility>
#include "base/auto_reset.h"
#include "base/check_deref.h"
#include "base/check_op.h"
#include "base/command_line.h"
#include "base/containers/adapters.h"
#include "base/containers/contains.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ref.h"
#include "base/memory/safety_checks.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/no_destructor.h"
#include "base/notreached.h"
#include "base/observer_list.h"
#include "base/strings/strcat.h"
#include "base/strings/stringprintf.h"
#include "base/timer/elapsed_timer.h"
#include "components/crash/core/common/crash_key.h"
#include "third_party/abseil-cpp/absl/cleanup/cleanup.h"
#include "ui/accessibility/ax_bitset.h"
#include "ui/accessibility/ax_enums.mojom.h"
#include "ui/accessibility/ax_event.h"
#include "ui/accessibility/ax_language_detection.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_node_id_forward.h"
#include "ui/accessibility/ax_node_position.h"
#include "ui/accessibility/ax_role_properties.h"
#include "ui/accessibility/ax_selection.h"
#include "ui/accessibility/ax_table_info.h"
#include "ui/accessibility/ax_tree_observer.h"
#include "ui/gfx/geometry/transform.h"
#define ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(enum_value) \
base::UmaHistogramEnumeration( \
"Accessibility.Reliability.Tree.UnserializeError", enum_value)
namespace ui {
namespace {
// This is the list of reverse relations that are computed.
// This purposely does not include relations such as kRadioGroupIds where
// the reverse relation is not interesting to consumers.
constexpr ax::mojom::IntListAttribute kReverseRelationIntListAttributes[] = {
ax::mojom::IntListAttribute::kControlsIds,
ax::mojom::IntListAttribute::kDetailsIds,
ax::mojom::IntListAttribute::kDescribedbyIds,
ax::mojom::IntListAttribute::kErrormessageIds,
ax::mojom::IntListAttribute::kFlowtoIds,
ax::mojom::IntListAttribute::kLabelledbyIds};
constexpr ax::mojom::IntAttribute kReverseRelationIntAttributes[] = {
ax::mojom::IntAttribute::kActivedescendantId};
std::string TreeToStringHelper(const AXNode* node,
int indent,
bool verbose,
int& max_items) {
if (!node || max_items == 0) {
return "";
}
std::string str = base::StrCat(
{std::string(2 * indent, ' '), node->data().ToString(verbose), "\n"});
if (max_items > 0 && --max_items == 0) {
return str;
}
return std::accumulate(
node->children().cbegin(), node->children().cend(), std::move(str),
[indent, verbose, &max_items](std::string str,
const AXNode* child) mutable {
str.append(TreeToStringHelper(child, indent + 1, verbose, max_items));
return str;
});
}
// Return a formatted, indented, string representation of the tree, with each
// node on its own line.
// To stringify the entire tree, pass in max_items = -1.
// This method is used to help diagnose inconsistent tree states. Limiting the
// max number of items avoids out of memory errors and excessive logging.
constexpr int kMaxItemsToStringify = 200;
std::string TreeToString(const AXNode* node,
int indent,
bool verbose,
int max_items = kMaxItemsToStringify) {
return TreeToStringHelper(node, indent, verbose, max_items);
}
template <typename K, typename V>
bool KeyValuePairsKeysMatch(std::vector<std::pair<K, V>> pairs1,
std::vector<std::pair<K, V>> pairs2) {
if (pairs1.size() != pairs2.size())
return false;
for (size_t i = 0; i < pairs1.size(); ++i) {
if (pairs1[i].first != pairs2[i].first)
return false;
}
return true;
}
template <typename K, typename V>
std::map<K, V> MapFromKeyValuePairs(std::vector<std::pair<K, V>> pairs) {
std::map<K, V> result;
for (size_t i = 0; i < pairs.size(); ++i)
result[pairs[i].first] = pairs[i].second;
return result;
}
// Given two vectors of <K, V> key, value pairs representing an "old" vs "new"
// state, or "before" vs "after", calls a callback function for each key that
// changed value. Note that if an attribute is removed, that will result in
// a call to the callback with the value changing from the previous value to
// |empty_value|, and similarly when an attribute is added.
template <typename K, typename V, typename F>
void CallIfAttributeValuesChanged(const std::vector<std::pair<K, V>>& old_pairs,
const std::vector<std::pair<K, V>>& new_pairs,
const V& empty_value,
F callback) {
// Fast path - if they both have the same keys in the same order.
if (KeyValuePairsKeysMatch(old_pairs, new_pairs)) {
for (size_t i = 0; i < old_pairs.size(); ++i) {
const auto& old_entry = old_pairs[i];
const auto& new_entry = new_pairs[i];
if (old_entry.second != new_entry.second) {
callback(old_entry.first, old_entry.second, new_entry.second);
}
}
return;
}
// Slower path - they don't have the same keys in the same order, so
// check all keys against each other.
using VectorOfPairs = std::vector<std::pair<K, V>>&;
auto comp = [](const auto& lhs, const auto& rhs) {
return lhs.first < rhs.first;
};
std::sort(const_cast<VectorOfPairs>(old_pairs).begin(),
const_cast<VectorOfPairs>(old_pairs).end(), comp);
std::sort(const_cast<VectorOfPairs>(new_pairs).begin(),
const_cast<VectorOfPairs>(new_pairs).end(), comp);
for (size_t old_i = 0, new_i = 0;
old_i < old_pairs.size() || new_i < new_pairs.size();) {
// If we reached the end of one of the vectors.
if (old_i >= old_pairs.size()) {
const auto& new_pair = new_pairs[new_i];
if (new_pair.second != empty_value) {
callback(new_pair.first, empty_value, new_pair.second);
}
new_i++;
continue;
} else if (new_i >= new_pairs.size()) {
const auto& old_pair = old_pairs[old_i];
if (old_pair.second != empty_value) {
callback(old_pair.first, old_pair.second, empty_value);
}
old_i++;
continue;
}
const auto& old_pair = old_pairs[old_i];
const auto& new_pair = new_pairs[new_i];
if (old_pair.first == new_pair.first) {
if (old_pair.second != new_pair.second) {
callback(old_pair.first, old_pair.second, new_pair.second);
}
old_i++;
new_i++;
} else if (old_pair.first < new_pair.first) {
// This means `new_pairs` has no key for `old_pair.first`.
if (old_pair.second != empty_value) {
callback(old_pair.first, old_pair.second, empty_value);
}
old_i++;
} else {
// This means `old_pairs` has no key for `new_pair.first`.
if (new_pair.second != empty_value) {
callback(new_pair.first, empty_value, new_pair.second);
}
new_i++;
}
}
}
template <typename EnumType, typename CallbackType>
void CallIfAttributeValuesChanged(const ui::AXBitset<EnumType>& old_attributes,
const ui::AXBitset<EnumType>& new_attributes,
bool value_if_unset,
CallbackType callback) {
// `old_values` and `new_values` will contain:
// - The actual T/F value for explicitly set attributes.
// - '0' for attributes that were not set.
uint64_t old_values =
old_attributes.GetValues() & old_attributes.GetSetBits();
uint64_t new_values =
new_attributes.GetValues() & new_attributes.GetSetBits();
// If `value_if_unset` is true, it means any attribute *not* in `set_bits_`
// should be treated as having the value 'true'.
if (value_if_unset) {
old_values |= ~old_attributes.GetSetBits();
new_values |= ~new_attributes.GetSetBits();
}
// `changes` will have a '1' at each bit position where the old and new values
// differ.
uint64_t changes = old_values ^ new_values;
while (changes) {
// Get the index of the least significant '1' bit in `changes`.
// This is an attribute that has changed its effective value.
uint64_t index = std::countr_zero(changes);
uint64_t mask = 1ULL << index;
// Extract the effective old and new value for this specific attribute.
bool effective_old_value = static_cast<bool>(old_values & mask);
bool effective_new_value = static_cast<bool>(new_values & mask);
DCHECK_NE(effective_old_value, effective_new_value);
EnumType attr = static_cast<EnumType>(index);
callback(attr, effective_old_value, effective_new_value);
// Clear the processed differing bit from `changes` to find the next one.
changes &= changes - 1;
}
}
bool IsCollapsed(const AXNode* node) {
return node && node->HasState(ax::mojom::State::kCollapsed);
}
} // namespace
// static
bool AXTree::is_focused_node_always_unignored_ = false;
// This object is used to track structure changes that will occur for a specific
// AXID. This includes how many times we expect that a node with a specific AXID
// will be created and/or destroyed, and how many times a subtree rooted at AXID
// expects to be destroyed during an AXTreeUpdate.
//
// An AXTreeUpdate is a serialized representation of an atomic change to an
// AXTree. See also |AXTreeUpdate| which documents the nature and invariants
// required to atomically update the AXTree.
//
// The reason that we must track these counts, and the reason these are counts
// rather than a bool/flag is because an AXTreeUpdate may contain multiple
// AXNodeData updates for a given AXID. A common way that this occurs is when
// multiple AXTreeUpdates are merged together, combining their AXNodeData list.
// Additionally AXIDs may be reused after being removed from the tree,
// most notably when "reparenting" a node. A "reparent" occurs when an AXID is
// first destroyed from the tree then created again in the same AXTreeUpdate,
// which may also occur multiple times with merged updates.
//
// We need to accumulate these counts for 3 reasons :
// 1. To determine what structure changes *will* occur before applying
// updates to the tree so that we can notify observers of structure changes
// when the tree is still in a stable and unchanged state.
// 2. Capture any errors *before* applying updates to the tree structure
// due to the order of (or lack of) AXNodeData entries in the update
// so we can abort a bad update instead of applying it partway.
// 3. To validate that the expectations we accumulate actually match
// updates that are applied to the tree.
//
// To reiterate the invariants that this structure is taking a dependency on
// from |AXTreeUpdate|, suppose that the next AXNodeData to be applied is
// |node|. The following invariants must hold:
// 1. Either
// a) |node.id| is already in the tree, or
// b) the tree is empty, and
// |node| is the new root of the tree, and
// |node.role| == kRootWebArea.
// 2. Every child id in |node.child_ids| must either be already a child
// of this node, or a new id not previously in the tree. It is not
// allowed to "reparent" a child to this node without first removing
// that child from its previous parent.
// 3. When a new id appears in |node.child_ids|, the tree should create a
// new uninitialized placeholder node for it immediately. That
// placeholder must be updated within the same AXTreeUpdate, otherwise
// it's a fatal error. This guarantees the tree is always complete
// before or after an AXTreeUpdate.
struct PendingStructureChanges {
explicit PendingStructureChanges(const AXNode* node)
: destroy_subtree_count(0),
destroy_node_count(0),
create_node_count(0),
node_exists(!!node),
parent_node_id((node && node->parent())
? std::make_optional<AXNodeID>(node->parent()->id())
: std::nullopt),
last_known_data(node ? &node->data() : nullptr) {}
// Returns true if this node has any changes remaining.
// This includes pending subtree or node destruction, and node creation.
bool DoesNodeExpectAnyStructureChanges() const {
return DoesNodeExpectSubtreeWillBeDestroyed() ||
DoesNodeExpectNodeWillBeDestroyed() ||
DoesNodeExpectNodeWillBeCreated();
}
// Returns true if there are any pending changes that require destroying
// this node or its subtree.
bool DoesNodeExpectSubtreeOrNodeWillBeDestroyed() const {
return DoesNodeExpectSubtreeWillBeDestroyed() ||
DoesNodeExpectNodeWillBeDestroyed();
}
// Returns true if the subtree rooted at this node needs to be destroyed
// during the update, but this may not be the next action that needs to be
// performed on the node.
bool DoesNodeExpectSubtreeWillBeDestroyed() const {
return destroy_subtree_count;
}
// Returns true if this node needs to be destroyed during the update, but this
// may not be the next action that needs to be performed on the node.
bool DoesNodeExpectNodeWillBeDestroyed() const { return destroy_node_count; }
// Returns true if this node needs to be created during the update, but this
// may not be the next action that needs to be performed on the node.
bool DoesNodeExpectNodeWillBeCreated() const { return create_node_count; }
// Returns true if this node would exist in the tree as of the last pending
// update that was processed, and the node has not been provided node data.
bool DoesNodeRequireInit() const { return node_exists && !last_known_data; }
// Keep track of the number of times the subtree rooted at this node
// will be destroyed.
// An example of when this count may be larger than 1 is if updates were
// merged together. A subtree may be [created,] destroyed, created, and
// destroyed again within the same |AXTreeUpdate|. The important takeaway here
// is that an update may request destruction of a subtree rooted at an
// AXID more than once, not that a specific subtree is being destroyed
// more than once.
int32_t destroy_subtree_count = 0;
// Keep track of the number of times this node will be destroyed.
// An example of when this count may be larger than 1 is if updates were
// merged together. A node may be [created,] destroyed, created, and destroyed
// again within the same |AXTreeUpdate|. The important takeaway here is that
// an AXID may request destruction more than once, not that a specific node
// is being destroyed more than once.
int32_t destroy_node_count = 0;
// Keep track of the number of times this node will be created.
// An example of when this count may be larger than 1 is if updates were
// merged together. A node may be [destroyed,] created, destroyed, and created
// again within the same |AXTreeUpdate|. The important takeaway here is that
// an AXID may request creation more than once, not that a specific node is
// being created more than once.
int32_t create_node_count = 0;
// Keep track of whether this node exists in the tree as of the last pending
// update that was processed.
bool node_exists;
// Keep track of the parent id for this node as of the last pending
// update that was processed.
std::optional<AXNodeID> parent_node_id;
// Keep track of the last known node data for this node.
// This will be null either when a node does not exist in the tree, or
// when the node is new and has not been initialized with node data yet.
// This is needed to determine what children have changed between pending
// updates.
raw_ptr<const AXNodeData> last_known_data;
};
// Represents the different states when computing PendingStructureChanges
// required for tree Unserialize.
enum class AXTreePendingStructureStatus {
// PendingStructureChanges have not begun computation.
kNotStarted,
// PendingStructureChanges are currently being computed.
kComputing,
// All PendingStructureChanges have successfully been computed.
kComplete,
// An error occurred when computing pending changes.
kFailed,
};
// Intermediate state to keep track of during a tree update.
struct AXTreeUpdateState {
AXTreeUpdateState(const AXTree& tree, const AXTreeUpdate& pending_tree_update)
: pending_tree_update(pending_tree_update), tree(tree) {}
// Returns whether this update creates a node marked by |node_id|.
bool IsCreatedNode(AXNodeID node_id) const {
return base::Contains(new_node_ids, node_id);
}
// Returns whether this update creates |node|.
bool IsCreatedNode(const AXNode* node) const {
return IsCreatedNode(node->id());
}
// Returns whether this update reparents |node|.
bool IsReparentedNode(const AXNode* node) const {
DCHECK_EQ(AXTreePendingStructureStatus::kComplete, pending_update_status)
<< "This method should not be called before pending changes have "
"finished computing.";
return IsReparentedNode(node->id());
}
// Returns whether this update reparents the node represented by `node_data`.
bool IsReparentedNode(const AXNodeID node_id) const {
return reparenting_node_ids.contains(node_id);
}
// Returns true if the node should exist in the tree but doesn't have
// any node data yet.
bool DoesPendingNodeRequireInit(AXNodeID node_id) const {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
PendingStructureChanges* data = GetPendingStructureChanges(node_id);
return data && data->DoesNodeRequireInit();
}
// Returns the parent node id for the pending node.
std::optional<AXNodeID> GetParentIdForPendingNode(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
DCHECK(!data->parent_node_id ||
ShouldPendingNodeExistInTree(*data->parent_node_id));
return data->parent_node_id;
}
// Returns true if this node should exist in the tree.
bool ShouldPendingNodeExistInTree(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
return GetOrCreatePendingStructureChanges(node_id)->node_exists;
}
// Returns the last known node data for a pending node.
const AXNodeData& GetLastKnownPendingNodeData(AXNodeID node_id) const {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
static base::NoDestructor<AXNodeData> empty_data;
PendingStructureChanges* data = GetPendingStructureChanges(node_id);
return (data && data->last_known_data) ? *data->last_known_data
: *empty_data;
}
// Clear the last known pending data for |node_id|.
void ClearLastKnownPendingNodeData(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
GetOrCreatePendingStructureChanges(node_id)->last_known_data = nullptr;
}
// Update the last known pending node data for |node_data.id|.
void SetLastKnownPendingNodeData(const AXNodeData* node_data) {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
GetOrCreatePendingStructureChanges(node_data->id)->last_known_data =
node_data;
}
// Returns the number of times the update is expected to destroy a
// subtree rooted at |node_id|.
int32_t GetPendingDestroySubtreeCount(AXNodeID node_id) const {
DCHECK_EQ(AXTreePendingStructureStatus::kComplete, pending_update_status)
<< "This method should not be called before pending changes have "
"finished computing.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
return data->destroy_subtree_count;
return 0;
}
// Increments the number of times the update is expected to
// destroy a subtree rooted at |node_id|.
// Returns true on success, false on failure when the node will not exist.
bool IncrementPendingDestroySubtreeCount(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
if (!data->node_exists)
return false;
++data->destroy_subtree_count;
return true;
}
// Decrements the number of times the update is expected to
// destroy a subtree rooted at |node_id|.
void DecrementPendingDestroySubtreeCount(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComplete, pending_update_status)
<< "This method should not be called before pending changes have "
"finished computing.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
DCHECK_GT(data->destroy_subtree_count, 0);
--data->destroy_subtree_count;
}
}
// Returns the number of times the update is expected to destroy
// a node with |node_id|.
int32_t GetPendingDestroyNodeCount(AXNodeID node_id) const {
DCHECK_EQ(AXTreePendingStructureStatus::kComplete, pending_update_status)
<< "This method should not be called before pending changes have "
"finished computing.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
return data->destroy_node_count;
return 0;
}
// Increments the number of times the update is expected to
// destroy a node with |node_id|.
// Returns true on success, false on failure when the node will not exist.
bool IncrementPendingDestroyNodeCount(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
if (!data->node_exists)
return false;
++data->destroy_node_count;
data->node_exists = false;
data->last_known_data = nullptr;
data->parent_node_id = std::nullopt;
if (pending_root_id == node_id)
pending_root_id = std::nullopt;
// This node may have been flagged for reparenting previously. It is now
// deleted (possibly again).
reparenting_node_ids.erase(node_id);
deleting_node_ids.insert(node_id);
return true;
}
// Decrements the number of times the update is expected to
// destroy a node with |node_id|.
void DecrementPendingDestroyNodeCount(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComplete, pending_update_status)
<< "This method should not be called before pending changes have "
"finished computing.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
DCHECK_GT(data->destroy_node_count, 0);
--data->destroy_node_count;
}
}
// Returns the number of times the update is expected to create
// a node with |node_id|.
int32_t GetPendingCreateNodeCount(AXNodeID node_id) const {
DCHECK_EQ(AXTreePendingStructureStatus::kComplete, pending_update_status)
<< "This method should not be called before pending changes have "
"finished computing.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
return data->create_node_count;
return 0;
}
// Increments the number of times the update is expected to
// create a node with |node_id|.
// Returns true on success, false on failure when the node will already exist.
bool IncrementPendingCreateNodeCount(AXNodeID node_id,
std::optional<AXNodeID> parent_node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
if (data->node_exists)
return false;
++data->create_node_count;
data->node_exists = true;
data->parent_node_id = parent_node_id;
if (data->destroy_node_count > 0) {
// This node was destroyed by a previous update. This means a reparenting.
reparenting_node_ids.insert(node_id);
// This also means the node isn't going to be deleted after all.
deleting_node_ids.erase(node_id);
}
return true;
}
// Decrements the number of times the update is expected to
// create a node with |node_id|.
void DecrementPendingCreateNodeCount(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComplete, pending_update_status)
<< "This method should not be called before pending changes have "
"finished computing.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
DCHECK_GT(data->create_node_count, 0);
--data->create_node_count;
}
}
// Returns true if this node's updated data in conjunction with the updated
// tree data indicate that the node will need to invalidate any of its cached
// values, such as the number of its unignored children.
// TODO(accessibility) Can we use ignored_state_changed_ids here?
bool HasIgnoredChanged(const AXNodeData& new_data) const {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
const AXNodeData& old_data = GetLastKnownPendingNodeData(new_data.id);
return AXTree::ComputeNodeIsIgnored(
old_tree_data ? &old_tree_data.value() : nullptr, old_data) !=
AXTree::ComputeNodeIsIgnored(
new_tree_data ? &new_tree_data.value() : nullptr, new_data);
}
// Returns whether this update must invalidate the unignored cached
// values for |node_id|.
bool InvalidatesUnignoredCachedValues(AXNodeID node_id) const {
return base::Contains(invalidate_unignored_cached_values_ids, node_id);
}
// Adds the parent of |node_id| to the list of nodes to invalidate unignored
// cached values.
void InvalidateParentNodeUnignoredCacheValues(AXNodeID node_id) {
DCHECK_EQ(AXTreePendingStructureStatus::kComputing, pending_update_status)
<< "This method should only be called while computing pending changes, "
"before updates are made to the tree.";
std::optional<AXNodeID> parent_node_id = GetParentIdForPendingNode(node_id);
if (parent_node_id) {
invalidate_unignored_cached_values_ids.insert(*parent_node_id);
}
}
// Indicates the status for calculating what changes will occur during
// an update before the update applies changes.
AXTreePendingStructureStatus pending_update_status =
AXTreePendingStructureStatus::kNotStarted;
// Keeps track of the existing tree's root node id when calculating what
// changes will occur during an update before the update applies changes.
std::optional<AXNodeID> pending_root_id;
// Keeps track of whether the root node will need to be created as a new node.
// This may occur either when the root node does not exist before applying
// updates to the tree (new tree), or if the root is the |node_id_to_clear|
// and will be destroyed before applying AXNodeData updates to the tree.
bool root_will_be_created = false;
// During an update, this keeps track of all node IDs that have been
// implicitly referenced as part of this update, but haven't been updated yet.
// It's an error if there are any pending nodes at the end of Unserialize.
std::set<AXNodeID> pending_node_ids;
// before, During and after an update, this keeps track of the nodes' data
// that have been provided as part of the update.
std::vector<AXNodeData> updated_nodes;
// Keeps track of nodes whose cached unignored child count, or unignored
// index in parent may have changed, and must be updated.
std::set<AXNodeID> invalidate_unignored_cached_values_ids;
// Keeps track of nodes that have changed their node data or their ignored
// state.
std::set<AXNodeID> node_data_changed_ids;
// Keeps track of any nodes that are changing their ignored state.
std::set<AXNodeID> ignored_state_changed_ids;
// Keeps track of new nodes created during this update.
std::set<AXNodeID> new_node_ids;
// Nodes expected to be deleted.
std::set<AXNodeID> deleting_node_ids;
// Nodes expected to be reparented.
std::set<AXNodeID> reparenting_node_ids;
// Maps between a node id and its pending update information.
std::map<AXNodeID, std::unique_ptr<PendingStructureChanges>>
node_id_to_pending_data;
// Maps between a node id and the data it owned before being updated.
// We need to keep this around in order to correctly fire post-update events.
std::map<AXNodeID, AXNodeData> old_node_id_to_data;
// Optional copy of the old tree data, only populated when the tree data will
// need to be updated.
std::optional<AXTreeData> old_tree_data;
// Optional copy of the updated tree data, used when calculating what changes
// will occur during an update before the update applies changes.
std::optional<AXTreeData> new_tree_data;
// Keep track of the pending tree update to help create useful error messages.
// TODO(crbug.com/40736019) Revert this once we have the crash data we need
// (crrev.com/c/2892259).
const raw_ref<const AXTreeUpdate> pending_tree_update;
private:
PendingStructureChanges* GetPendingStructureChanges(AXNodeID node_id) const {
auto iter = node_id_to_pending_data.find(node_id);
return (iter != node_id_to_pending_data.cend()) ? iter->second.get()
: nullptr;
}
PendingStructureChanges* GetOrCreatePendingStructureChanges(
AXNodeID node_id) {
auto iter = node_id_to_pending_data.find(node_id);
if (iter == node_id_to_pending_data.cend()) {
const AXNode* node = tree->GetFromId(node_id);
iter = node_id_to_pending_data
.emplace(std::make_pair(
node_id, std::make_unique<PendingStructureChanges>(node)))
.first;
}
return iter->second.get();
}
// We need to hold onto a reference to the AXTree so that we can
// lazily initialize |PendingStructureChanges| objects.
const raw_ref<const AXTree> tree;
};
AXTree::NodeSetSizePosInSetInfo::NodeSetSizePosInSetInfo() = default;
AXTree::NodeSetSizePosInSetInfo::~NodeSetSizePosInSetInfo() = default;
struct AXTree::OrderedSetContent {
explicit OrderedSetContent(const AXNode* ordered_set = nullptr)
: ordered_set_(ordered_set) {}
~OrderedSetContent() = default;
std::vector<raw_ptr<const AXNode, VectorExperimental>> set_items_;
// Some ordered set items may not be associated with an ordered set.
raw_ptr<const AXNode> ordered_set_;
};
struct AXTree::OrderedSetItemsMap {
OrderedSetItemsMap() = default;
~OrderedSetItemsMap() = default;
// Check if a particular hierarchical level exists in this map.
bool HierarchicalLevelExists(std::optional<int> level) {
if (items_map_.find(level) == items_map_.end())
return false;
return true;
}
// Add the OrderedSetContent to the corresponding hierarchical level in the
// map.
void Add(std::optional<int> level,
const OrderedSetContent& ordered_set_content) {
if (!HierarchicalLevelExists(level))
items_map_[level] = std::vector<OrderedSetContent>();
items_map_[level].push_back(ordered_set_content);
}
// Add an ordered set item to the OrderedSetItemsMap given its hierarchical
// level. We always want to append the item to the last OrderedSetContent of
// that hierarchical level, due to the following:
// - The last OrderedSetContent on any level of the items map is in progress
// of being populated.
// - All other OrderedSetContent other than the last one on a level
// represents a complete ordered set and should not be modified.
void AddItemToBack(std::optional<int> level, const AXNode* item) {
if (!HierarchicalLevelExists(level))
return;
std::vector<OrderedSetContent>& sets_list = items_map_[level];
if (!sets_list.empty()) {
OrderedSetContent& ordered_set_content = sets_list.back();
ordered_set_content.set_items_.push_back(item);
}
}
// Retrieve the first OrderedSetContent of the OrderedSetItemsMap.
OrderedSetContent* GetFirstOrderedSetContent() {
if (items_map_.empty())
return nullptr;
std::vector<OrderedSetContent>& sets_list = items_map_.begin()->second;
if (sets_list.empty())
return nullptr;
return &(sets_list.front());
}
// Clears all the content in the map.
void Clear() { items_map_.clear(); }
// Maps a hierarchical level to a list of OrderedSetContent.
std::map<std::optional<int32_t>, std::vector<OrderedSetContent>> items_map_;
};
// static
void AXTree::SetFocusedNodeShouldNeverBeIgnored() {
is_focused_node_always_unignored_ = true;
}
// static
bool AXTree::ComputeNodeIsIgnored(const AXTreeData* optional_tree_data,
const AXNodeData& node_data) {
// A node with an ARIA presentational role (role="none") should also be
// ignored.
bool is_ignored = node_data.HasState(ax::mojom::State::kIgnored) ||
node_data.role == ax::mojom::Role::kNone;
// Exception: We should never ignore focused nodes otherwise users of
// assistive software might be unable to interact with the webpage.
//
// TODO(nektar): This check is erroneous: It's missing a check of
// focused_tree_id. Fix after updating `AXNode::IsFocusedInThisTree`.
if (is_focused_node_always_unignored_ && is_ignored && optional_tree_data &&
optional_tree_data->focus_id != kInvalidAXNodeID &&
node_data.id == optional_tree_data->focus_id) {
// If the focus has moved to or away from this node, it can also flip the
// ignored state, provided that the node's data has the ignored state in the
// first place. In all other cases, focus cannot affect the ignored state.
is_ignored = false;
}
return is_ignored;
}
// static
bool AXTree::ComputeNodeIsIgnoredChanged(
const AXTreeData* optional_old_tree_data,
const AXNodeData& old_node_data,
const AXTreeData* optional_new_tree_data,
const AXNodeData& new_node_data) {
// We should not notify observers of an ignored state change if the node was
// invisible and continues to be invisible after the update. Also, we should
// not notify observers if the node has flipped its invisible state from
// invisible to visible or vice versa. This is because when invisibility
// changes, the entire subtree is being inserted or removed. For example if
// the "hidden" CSS property is deleted from a list item, its ignored state
// will change but the change would be due to the list item becoming visible
// and thereby adding a whole subtree of nodes, including a list marker and
// possibly some static text. This situation arises because hidden nodes are
// included in the internal accessibility tree, but they are marked as
// ignored.
//
// TODO(nektar): This should be dealt with by fixing AXEventGenerator or
// individual platforms.
const bool old_node_is_ignored =
ComputeNodeIsIgnored(optional_old_tree_data, old_node_data);
const bool new_node_is_ignored =
ComputeNodeIsIgnored(optional_new_tree_data, new_node_data);
return old_node_is_ignored != new_node_is_ignored;
}
#if BUILDFLAG(IS_LINUX)
ExtraAnnouncementNodes::ExtraAnnouncementNodes(AXNode* root) {
assertive_node_ = CreateNode("assertive", root);
polite_node_ = CreateNode("polite", root);
}
ExtraAnnouncementNodes::~ExtraAnnouncementNodes() {
assertive_node_.reset();
polite_node_.reset();
}
std::unique_ptr<AXNode> ExtraAnnouncementNodes::CreateNode(
const std::string& live_status,
AXNode* root) {
AXNodeData data;
// Use a negative number so as not to conflict with positive-numbered node IDs
// from tree sources.
data.id = root->tree()->GetNextNegativeInternalNodeId();
data.role = ax::mojom::Role::kTextField;
data.AddStringAttribute(ax::mojom::StringAttribute::kContainerLiveStatus,
live_status);
const auto count = (live_status == "assertive")
? ExtraAnnouncementNodes::kHighPriorityIndex
: ExtraAnnouncementNodes::kNormalPriorityIndex;
auto node = std::make_unique<AXNode>(
/*tree=*/root->tree(), /*parent=*/root, /*id=*/data.id,
/*index_in_parent=*/count + root->GetChildCount(),
/*unignored_index_in_parent=*/count + root->GetUnignoredChildCount());
node->SetData(data);
return node;
}
#endif // BUILDFLAG(IS_LINUX)
AXTree::AXTree() {
// TODO(chrishall): should language_detection_manager be a member or pointer?
// TODO(chrishall): do we want to initialize all the time, on demand, or only
// when feature flag is set?
DCHECK(!language_detection_manager);
language_detection_manager =
std::make_unique<AXLanguageDetectionManager>(this);
}
AXTree::AXTree(const AXTreeUpdate& initial_state) {
CHECK(Unserialize(initial_state)) << error();
DCHECK(!language_detection_manager);
language_detection_manager =
std::make_unique<AXLanguageDetectionManager>(this);
}
AXTree::~AXTree() {
Destroy();
// Language detection manager will detach from AXTree observer list in its
// destructor. But because of variable order, when destroying AXTree, the
// observer list will already be destroyed. To avoid that problem, free
// language detection manager before.
language_detection_manager.reset();
CHECK(observers_.empty());
}
void AXTree::AddObserver(AXTreeObserver* observer) {
observers_.AddObserver(observer);
}
bool AXTree::HasObserver(AXTreeObserver* observer) {
return observers_.HasObserver(observer);
}
void AXTree::RemoveObserver(AXTreeObserver* observer) {
observers_.RemoveObserver(observer);
}
const AXTreeID& AXTree::GetAXTreeID() const {
return data().tree_id;
}
const AXTreeData& AXTree::data() const {
return data_;
}
AXNode* AXTree::GetFromId(AXNodeID id) const {
if (id == kInvalidAXNodeID) {
return nullptr;
}
auto iter = id_map_.find(id);
return iter != id_map_.end() ? iter->second.get() : nullptr;
}
void AXTree::Destroy() {
base::ElapsedThreadTimer timer;
#if BUILDFLAG(IS_LINUX)
ClearExtraAnnouncementNodes();
#endif // BUILDFLAG(IS_LINUX)
table_info_map_.clear();
if (!root_)
return;
#if DCHECK_IS_ON()
is_destroyed_ = true;
#endif
std::set<AXNodeID> deleting_node_ids;
RecursivelyNotifyNodeWillBeDeletedForTreeTeardown(*root_, deleting_node_ids);
observers_.Notify(&AXTreeObserver::OnAtomicUpdateStarting, this,
deleting_node_ids, std::set<AXNodeID>{});
{
ScopedTreeUpdateInProgressStateSetter tree_update_in_progress(*this);
// ExtractAsDangling clears the underlying pointer and returns another
// raw_ptr instance that is allowed to dangle.
DestroyNodeAndSubtree(root_.ExtractAsDangling(), nullptr);
} // tree_update_in_progress.
UMA_HISTOGRAM_CUSTOM_TIMES("Accessibility.Performance.AXTree.Destroy2",
timer.Elapsed(), base::Microseconds(1),
base::Seconds(1), 50);
}
void AXTree::UpdateDataForTesting(const AXTreeData& new_data) {
if (data_ == new_data)
return;
AXTreeUpdate update;
update.has_tree_data = true;
update.tree_data = new_data;
Unserialize(update);
}
gfx::RectF AXTree::RelativeToTreeBoundsInternal(const AXNode* node,
gfx::RectF bounds,
bool* offscreen,
bool clip_bounds,
bool skip_container_offset,
bool allow_recursion) const {
// If |bounds| is uninitialized, which is not the same as empty,
// start with the node bounds.
if (bounds.width() == 0 && bounds.height() == 0) {
bounds = node->data().relative_bounds.bounds;
// If the node bounds is empty (either width or height is zero),
// try to compute good bounds from the children.
// If a tree update is in progress, skip this step as children may be in a
// bad state.
if (bounds.IsEmpty() && !GetTreeUpdateInProgressState() &&
allow_recursion) {
for (AXNode* child : node->children()) {
gfx::RectF child_bounds = RelativeToTreeBoundsInternal(
child, gfx::RectF(), /*offscreen=*/nullptr, clip_bounds,
skip_container_offset,
/*allow_recursion=*/false);
bounds.Union(child_bounds);
}
if (bounds.width() > 0 && bounds.height() > 0) {
return bounds;
}
}
} else if (!skip_container_offset) {
bounds.Offset(node->data().relative_bounds.bounds.x(),
node->data().relative_bounds.bounds.y());
}
const AXNode* original_node = node;
while (node != nullptr) {
if (node->data().relative_bounds.transform)
bounds = node->data().relative_bounds.transform->MapRect(bounds);
// Apply any transforms and offsets for each node and then walk up to
// its offset container. If no offset container is specified, coordinates
// are relative to the root node.
const AXNode* container =
GetFromId(node->data().relative_bounds.offset_container_id);
if (!container && container != root())
container = root();
if (!container || container == node || skip_container_offset)
break;
gfx::RectF container_bounds = container->data().relative_bounds.bounds;
bounds.Offset(container_bounds.x(), container_bounds.y());
if (container->HasIntAttribute(ax::mojom::IntAttribute::kScrollX) &&
container->HasIntAttribute(ax::mojom::IntAttribute::kScrollY)) {
int scroll_x =
container->GetIntAttribute(ax::mojom::IntAttribute::kScrollX);
int scroll_y =
container->GetIntAttribute(ax::mojom::IntAttribute::kScrollY);
bounds.Offset(-scroll_x, -scroll_y);
}
// Get the intersection between the bounds and the container.
gfx::RectF intersection = bounds;
intersection.Intersect(container_bounds);
// Calculate the clipped bounds to determine offscreen state.
gfx::RectF clipped = bounds;
// If this node has the kClipsChildren attribute set, clip the rect to fit.
if (container->GetBoolAttribute(ax::mojom::BoolAttribute::kClipsChildren)) {
if (!intersection.IsEmpty()) {
// We can simply clip it to the container.
clipped = intersection;
} else {
// Totally offscreen. Find the nearest edge or corner.
// Make the minimum dimension 1 instead of 0.
if (clipped.x() >= container_bounds.width()) {
clipped.set_x(container_bounds.right() - 1);
clipped.set_width(1);
} else if (clipped.x() + clipped.width() <= 0) {
clipped.set_x(container_bounds.x());
clipped.set_width(1);
}
if (clipped.y() >= container_bounds.height()) {
clipped.set_y(container_bounds.bottom() - 1);
clipped.set_height(1);
} else if (clipped.y() + clipped.height() <= 0) {
clipped.set_y(container_bounds.y());
clipped.set_height(1);
}
}
}
if (clip_bounds)
bounds = clipped;
if (container->GetBoolAttribute(ax::mojom::BoolAttribute::kClipsChildren) &&
intersection.IsEmpty() && !clipped.IsEmpty()) {
// If it is offscreen with respect to its parent, and the node itself is
// not empty, label it offscreen.
// Here we are extending the definition of offscreen to include elements
// that are clipped by their parents in addition to those clipped by
// the rootWebArea.
// No need to update |offscreen| if |intersection| is not empty, because
// it should be false by default.
if (offscreen != nullptr)
*offscreen |= true;
}
node = container;
}
// If we don't have any size yet, try to adjust the bounds to fill the
// nearest ancestor that does have bounds.
//
// The rationale is that it's not useful to the user for an object to
// have no width or height and it's probably a bug; it's better to
// reflect the bounds of the nearest ancestor rather than a 0x0 box.
// Tag this node as 'offscreen' because it has no true size, just a
// size inherited from the ancestor.
if (bounds.width() == 0 && bounds.height() == 0) {
const AXNode* ancestor = original_node->parent();
gfx::RectF ancestor_bounds;
while (ancestor) {
ancestor_bounds = ancestor->data().relative_bounds.bounds;
if (ancestor_bounds.width() > 0 || ancestor_bounds.height() > 0)
break;
ancestor = ancestor->parent();
}
if (ancestor && allow_recursion) {
bool ignore_offscreen = false;
ancestor_bounds = RelativeToTreeBoundsInternal(
ancestor, gfx::RectF(), &ignore_offscreen, clip_bounds,
skip_container_offset,
/* allow_recursion = */ false);
gfx::RectF original_bounds = original_node->data().relative_bounds.bounds;
if (original_bounds.x() == 0 && original_bounds.y() == 0) {
bounds = ancestor_bounds;
} else {
bounds.set_width(std::max(0.0f, ancestor_bounds.right() - bounds.x()));
bounds.set_height(
std::max(0.0f, ancestor_bounds.bottom() - bounds.y()));
}
if (offscreen != nullptr)
*offscreen |= true;
}
}
return bounds;
}
gfx::RectF AXTree::RelativeToTreeBounds(const AXNode* node,
gfx::RectF bounds,
bool* offscreen,
bool clip_bounds,
bool skip_container_offset) const {
bool allow_recursion = true;
return RelativeToTreeBoundsInternal(node, bounds, offscreen, clip_bounds,
skip_container_offset, allow_recursion);
}
gfx::RectF AXTree::GetTreeBounds(const AXNode* node,
bool* offscreen,
bool clip_bounds) const {
return RelativeToTreeBounds(node, gfx::RectF(), offscreen, clip_bounds);
}
std::set<AXNodeID> AXTree::GetReverseRelations(ax::mojom::IntAttribute attr,
AXNodeID dst_id) const {
DCHECK(IsNodeIdIntAttribute(attr));
// Conceptually, this is the "const" version of:
// return int_reverse_relations_[attr][dst_id];
const auto& attr_relations = int_reverse_relations_.find(attr);
if (attr_relations != int_reverse_relations_.end()) {
const auto& result = attr_relations->second.find(dst_id);
if (result != attr_relations->second.end())
return result->second;
}
return std::set<AXNodeID>();
}
std::set<AXNodeID> AXTree::GetReverseRelations(ax::mojom::IntListAttribute attr,
AXNodeID dst_id) const {
DCHECK(IsNodeIdIntListAttribute(attr));
// Conceptually, this is the "const" version of:
// return intlist_reverse_relations_[attr][dst_id];
const auto& attr_relations = intlist_reverse_relations_.find(attr);
if (attr_relations != intlist_reverse_relations_.end()) {
const auto& result = attr_relations->second.find(dst_id);
if (result != attr_relations->second.end())
return result->second;
}
return std::set<AXNodeID>();
}
std::set<AXNodeID> AXTree::GetNodeIdsForChildTreeId(
AXTreeID child_tree_id) const {
// Conceptually, this is the "const" version of:
// return child_tree_id_reverse_map_[child_tree_id];
const auto& result = child_tree_id_reverse_map_.find(child_tree_id);
if (result != child_tree_id_reverse_map_.end())
return result->second;
return std::set<AXNodeID>();
}
const std::set<AXTreeID> AXTree::GetAllChildTreeIds() const {
std::set<AXTreeID> result;
for (auto entry : child_tree_id_reverse_map_)
result.insert(entry.first);
return result;
}
bool AXTree::Unserialize(const AXTreeUpdate& update) {
// This function is known to be heap allocation heavy and performance
// critical. Extra memory safety checks can introduce regression
// (https://crbug.com/388873485) and these are disabled here.
// TODO(https://crbug.com/391797366): Optimize memory allocation patterns and
// remove this exclusion.
base::ScopedSafetyChecksExclusion scoped_unsafe;
#if AX_FAIL_FAST_BUILD() && !defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
for (const auto& new_data : update.nodes)
CHECK(new_data.id != kInvalidAXNodeID)
<< "AXTreeUpdate contains invalid node: " << update.ToString();
if (update.tree_data.tree_id != AXTreeIDUnknown() &&
data_.tree_id != AXTreeIDUnknown()) {
CHECK_EQ(update.tree_data.tree_id, data_.tree_id)
<< "Tree id mismatch between tree update and this tree.";
}
#endif // AX_FAIL_FAST_BUILD()
#if DCHECK_IS_ON()
++unserialize_count_;
DCHECK(!is_destroyed_) << "Attempt to unserialize on a destroyed tree: #"
<< unserialize_count_ << " on "
<< update.ToString(true).substr(0, 1000);
#endif
event_data_ = std::make_unique<AXEvent>();
event_data_->event_from = update.event_from;
event_data_->event_from_action = update.event_from_action;
event_data_->event_intents = update.event_intents;
absl::Cleanup clear_event_data = [this] { event_data_.reset(); };
AXTreeUpdateState update_state(*this, update);
const AXNodeID old_root_id = root_ ? root_->id() : kInvalidAXNodeID;
if (old_root_id == kInvalidAXNodeID && update.root_id == kInvalidAXNodeID &&
(!update.has_tree_data || !update.nodes.empty())) {
// This tree has not yet been initialized (no root). If the update does not
// have a root id, it must be trying to apply a tree data update. For
// example, RenderFrameHostImpl::UpdateAXTreeData. With invalid root ids on
// the update and in this tree, we never would expect the update to contain
// node data.
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
return false;
#elif DCHECK_IS_ON()
DCHECK(false)
<< "Tree must have already a valid root or update must have a "
"valid root: update #"
<< unserialize_count_ << " with update:\n"
<< update.ToString(true).substr(0, 1000);
#else
NOTREACHED() << "Tree must have already a valid root or update must have a "
"valid root.";
#endif
}
// Accumulates the work that will be required to update the AXTree.
// This allows us to notify observers of structure changes when the
// tree is still in a stable and unchanged state.
if (!ComputePendingChanges(update, &update_state))
return false;
// Log unserialize perf after early returns.
SCOPED_UMA_HISTOGRAM_TIMER_MICROS(
"Accessibility.Performance.Tree.Unserialize2");
// Notify observers of subtrees and nodes that are about to be destroyed or
// reparented, this must be done before applying any updates to the tree.
for (auto&& pair : update_state.node_id_to_pending_data) {
const AXNodeID node_id = pair.first;
const std::unique_ptr<PendingStructureChanges>& data = pair.second;
if (data->DoesNodeExpectSubtreeOrNodeWillBeDestroyed()) {
if (AXNode* node = GetFromId(node_id)) {
if (data->DoesNodeExpectSubtreeWillBeDestroyed()) {
NotifySubtreeWillBeReparentedOrDeleted(node, &update_state);
}
if (data->DoesNodeExpectNodeWillBeDestroyed()) {
NotifyNodeWillBeReparentedOrDeleted(*node, update_state);
}
}
}
}
// Notify observers of nodes that are about to change their ignored state or
// their data. This must be done before applying any updates to the tree. This
// is iterating in reverse order so that we only notify once per node id, and
// so that we only notify the initial node data against the final node data,
// unless the node is a new root.
std::set<AXNodeID> notified_node_attributes_will_change;
for (const auto& new_data : update_state.updated_nodes) {
const bool is_new_root =
update_state.root_will_be_created && new_data.id == update.root_id;
if (is_new_root) {
continue;
}
AXNode* node = GetFromId(new_data.id);
// For performance, skip text deletion/insertion events on ignored nodes.
if (node && !new_data.IsIgnored() && !node->data().IsIgnored() &&
notified_node_attributes_will_change.insert(new_data.id).second) {
if (new_data.HasIntListAttribute(
ax::mojom::IntListAttribute::kTextOperationStartOffsets)) {
DCHECK(new_data.HasIntListAttribute(
ax::mojom::IntListAttribute::kTextOperationStartOffsets));
DCHECK(new_data.HasIntListAttribute(
ax::mojom::IntListAttribute::kTextOperationEndOffsets));
DCHECK(new_data.HasIntListAttribute(
ax::mojom::IntListAttribute::kTextOperationStartAnchorIds));
DCHECK(new_data.HasIntListAttribute(
ax::mojom::IntListAttribute::kTextOperationEndAnchorIds));
DCHECK(new_data.HasIntListAttribute(
ax::mojom::IntListAttribute::kTextOperations));
observers_.Notify(&AXTreeObserver::OnTextDeletionOrInsertion, *node,
new_data);
}
NotifyNodeAttributesWillChange(
node, update_state,
update_state.old_tree_data ? &update_state.old_tree_data.value()
: nullptr,
node->data(),
update_state.new_tree_data ? &update_state.new_tree_data.value()
: nullptr,
new_data);
}
}
// Notify observers of nodes about to change their ignored state.
for (AXNodeID id : update_state.ignored_state_changed_ids) {
AXNode* node = GetFromId(id);
if (node) {
bool will_be_ignored = !node->IsIgnored();
// Don't fire ignored state change when the parent is also changing to
// the same ignored state.
bool is_root_of_ignored_change =
!node->parent() ||
!base::Contains(update_state.ignored_state_changed_ids,
node->parent()->id()) ||
node->IsIgnored() != node->parent()->IsIgnored();
observers_.Notify(&AXTreeObserver::OnIgnoredWillChange, this, node,
will_be_ignored, is_root_of_ignored_change);
}
}
observers_.Notify(&AXTreeObserver::OnAtomicUpdateStarting, this,
update_state.deleting_node_ids,
update_state.reparenting_node_ids);
// Now that we have finished sending events for changes that will happen,
// set update state to true. |tree_update_in_progress_| gets set back to
// false whenever this function exits.
std::vector<AXTreeObserver::Change> changes;
{
ScopedTreeUpdateInProgressStateSetter tree_update_in_progress(*this);
// Update the tree data. Do not call `UpdateDataForTesting` since this
// method should be used only for testing, but importantly, we want to defer
// the `OnTreeDataChanged` event until after the tree has finished updating.
if (update_state.new_tree_data)
data_ = update.tree_data;
// Handle |node_id_to_clear| before applying ordinary node updates.
// We distinguish between updating the root, e.g. changing its children or
// some of its attributes, or replacing the root completely. If the root is
// being updated, update.node_id_to_clear should hold the current root's ID.
// Otherwise if the root is being replaced, update.root_id should hold the
// ID of the new root.
bool root_updated = false;
if (update.node_id_to_clear != kInvalidAXNodeID) {
// If the incoming tree was initialized with a root with an id != 1, the
// update won't match the tree created by CreateEmptyDocument In this
// case, the update won't be able to set the right node_id_to_clear.
// If node_id_to_clear was set and the update's root_id doesn't match the
// old_root_id, we assume that the update meant to replace the root.
int node_id_to_clear = update.node_id_to_clear;
if (!GetFromId(node_id_to_clear) && update.root_id == node_id_to_clear &&
update.root_id != old_root_id && root_) {
node_id_to_clear = old_root_id;
}
if (AXNode* cleared_node = GetFromId(node_id_to_clear)) {
DCHECK(root_);
if (cleared_node == root_) {
// Only destroy the root if the root was replaced and not if it's
// simply updated. To figure out if the root was simply updated, we
// compare the ID of the new root with the existing root ID.
if (update.root_id != old_root_id) {
// Clear root_ before calling DestroySubtree so that root_ doesn't
// ever point to an invalid node.
AXNode* old_root = root_;
root_ = nullptr;
DestroySubtree(old_root, &update_state);
} else {
// If the root has simply been updated, we treat it like an update
// to any other node.
root_updated = true;
}
}
// If the tree doesn't exists any more because the root has just been
// replaced, there is nothing more to clear.
if (root_) {
for (AXNode* child : cleared_node->children()) {
DestroySubtree(child, &update_state);
}
std::vector<raw_ptr<AXNode, VectorExperimental>> children;
cleared_node->SwapChildren(&children);
update_state.pending_node_ids.insert(cleared_node->id());
}
}
}
DCHECK_EQ(update.root_id != kInvalidAXNodeID && !GetFromId(update.root_id),
update_state.root_will_be_created);
// Update all of the nodes in the update.
for (const AXNodeData& updated_node_data : update_state.updated_nodes) {
const bool is_new_root = update_state.root_will_be_created &&
updated_node_data.id == update.root_id;
if (!UpdateNode(updated_node_data, is_new_root, &update_state))
return false;
}
if (!root_) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kNoRoot);
RecordError(update_state, "Tree has no root.", false);
return false;
}
if (!ValidatePendingChangesComplete(update_state))
return false;
changes.reserve(update_state.updated_nodes.size());
// Look for changes to nodes that are a descendant of a table,
// and invalidate their table info if so. We have to walk up the
// ancestry of every node that was updated potentially, so keep track of
// ids that were checked to eliminate duplicate work.
std::set<AXNodeID> table_ids_checked;
for (const AXNodeData& node_data : update_state.updated_nodes) {
AXNode* node = GetFromId(node_data.id);
while (node) {
if (table_ids_checked.find(node->id()) != table_ids_checked.end())
break;
// Remove any table infos.
const auto& table_info_entry = table_info_map_.find(node->id());
if (table_info_entry != table_info_map_.end()) {
table_info_entry->second->Invalidate();
#if defined(AX_EXTRA_MAC_NODES)
// It will emit children changed notification on mac to make sure that
// extra mac accessibles are recreated.
changes.emplace_back(node, AXTreeObserver::NODE_CHANGED);
#endif
}
table_ids_checked.insert(node->id());
node = node->parent();
}
}
// Clears |node_set_size_pos_in_set_info_map_|
node_set_size_pos_in_set_info_map_.clear();
// A set to track which nodes have already been added to |changes|, so that
// nodes aren't added twice.
std::set<AXNodeID> visited_observer_changes;
for (const AXNodeData& updated_node_data : update_state.updated_nodes) {
AXNode* node = GetFromId(updated_node_data.id);
if (!node ||
!visited_observer_changes.emplace(updated_node_data.id).second)
continue;
bool is_new_node = update_state.IsCreatedNode(node);
bool is_reparented_node = update_state.IsReparentedNode(node);
AXTreeObserver::ChangeType change = AXTreeObserver::NODE_CHANGED;
if (is_new_node) {
if (is_reparented_node) {
// A reparented subtree is any new node whose parent either doesn't
// exist, or whose parent is not new.
// Note that we also need to check for the special case when we update
// the root without replacing it.
bool is_subtree = !node->parent() ||
!update_state.IsCreatedNode(node->parent()) ||
(node->parent() == root_ && root_updated);
change = is_subtree ? AXTreeObserver::SUBTREE_REPARENTED
: AXTreeObserver::NODE_REPARENTED;
} else {
// A new subtree is any new node whose parent is either not new, or
// whose parent happens to be new only because it has been reparented.
// Note that we also need to check for the special case when we update
// the root without replacing it.
bool is_subtree =
!node->parent() || !update_state.IsCreatedNode(node->parent()) ||
update_state.IsReparentedNode(node->parent()->id()) ||
(node->parent() == root_ && root_updated);
change = is_subtree ? AXTreeObserver::SUBTREE_CREATED
: AXTreeObserver::NODE_CREATED;
}
}
changes.emplace_back(node, change);
}
// Clear cached information in `AXComputedNodeData` for every node that has
// been changed in any way, including because of changes to one of its
// descendants.
std::set<AXNodeID> cleared_computed_node_data_ids;
for (AXNodeID node_id : update_state.node_data_changed_ids) {
AXNode* node = GetFromId(node_id);
while (node) {
if (cleared_computed_node_data_ids.insert(node->id()).second)
node->ClearComputedNodeData();
node = node->parent();
}
}
// Update the unignored cached values as necessary, ensuring that we only
// update once for each unignored node.
// If the node is ignored, we must update from an unignored ancestor.
// TODO(alexs) Look into removing this loop and adding unignored ancestors
// at the same place we add ids to updated_unignored_cached_values_ids.
std::set<AXNodeID> updated_unignored_cached_values_ids;
for (AXNodeID node_id :
update_state.invalidate_unignored_cached_values_ids) {
AXNode* unignored_ancestor = GetUnignoredAncestorFromId(node_id);
if (unignored_ancestor &&
updated_unignored_cached_values_ids.insert(unignored_ancestor->id())
.second) {
unignored_ancestor->UpdateUnignoredCachedValues();
// If the node was ignored, then it's unignored ancestor need to be
// considered part of the changed node list, allowing properties such as
// hypertext to be recomputed.
if (unignored_ancestor->id() != node_id &&
visited_observer_changes.emplace(unignored_ancestor->id()).second) {
changes.emplace_back(unignored_ancestor,
AXTreeObserver::NODE_CHANGED);
}
}
}
} // tree_update_in_progress.
if (update_state.old_tree_data) {
DCHECK(update.has_tree_data)
<< "If `UpdateState::old_tree_data` exists, then there must be a "
"request to update the tree data.";
// Now that the tree is stable and its nodes have been updated, notify if
// the tree data changed. We must do this after updating nodes in case the
// root has been replaced, so observers have the most up-to-date
// information.
observers_.Notify(&AXTreeObserver::OnTreeDataChanged, this,
*update_state.old_tree_data, data_);
}
// Now that the unignored cached values are up to date, notify observers of
// new nodes in the tree. This is done before notifications of deleted nodes,
// because deleting nodes can cause events to be fired, which will need to
// access the root, and therefore the BrowserAccessibilityManager needs to be
// aware of any newly created root as soon as possible.
for (AXNodeID node_id : update_state.new_node_ids) {
AXNode* node = GetFromId(node_id);
if (node) {
NotifyNodeHasBeenReparentedOrCreated(node, &update_state);
}
}
// Now that the unignored cached values are up to date, notify observers of
// the nodes that were deleted from the tree but not reparented.
for (AXNodeID node_id : update_state.deleting_node_ids) {
NotifyNodeHasBeenDeleted(node_id);
}
// Now that the unignored cached values are up to date, notify observers of
// node changes.
for (AXNodeID changed_id : update_state.node_data_changed_ids) {
AXNode* node = GetFromId(changed_id);
DCHECK(node);
// If the node exists and is in the old data map, then the node data
// may have changed unless this is a new root.
const bool is_new_root =
update_state.root_will_be_created && changed_id == update.root_id;
if (!is_new_root) {
auto it = update_state.old_node_id_to_data.find(changed_id);
if (it != update_state.old_node_id_to_data.end()) {
NotifyNodeAttributesHaveBeenChanged(
node, update_state,
update_state.old_tree_data ? &update_state.old_tree_data.value()
: nullptr,
it->second,
update_state.new_tree_data ? &update_state.new_tree_data.value()
: nullptr,
node->data());
}
}
// |OnNodeChanged| should be fired for all nodes that have been updated.
observers_.Notify(&AXTreeObserver::OnNodeChanged, this, node);
}
observers_.Notify(&AXTreeObserver::OnAtomicUpdateFinished, this,
root_->id() != old_root_id, changes);
#if AX_FAIL_FAST_BUILD()
CheckTreeConsistency(update);
#endif
return true;
}
#if AX_FAIL_FAST_BUILD()
void AXTree::CheckTreeConsistency(const AXTreeUpdate& update) {
// Return early if no expected node count was supplied.
if (!update.tree_checks || !update.tree_checks->node_count) {
return;
}
// Return early if the expected node count matches the node ids mapped.
if (update.tree_checks->node_count == id_map_.size()) {
return;
}
CHECK(root_);
std::ostringstream msg;
msg << "After a tree update, there is a tree inconsistency.\n"
<< "\n* Number of ids mapped: " << id_map_.size()
<< "\n* Serializer's node count: " << update.tree_checks->node_count
<< "\n* Slow nodes count: " << root_->GetSubtreeCount()
<< "\n* AXTreeUpdate: " << TreeToString(root_, 0, /*verbose*/ false);
NOTREACHED() << msg.str();
}
#endif // AX_FAIL_FAST_BUILD()
AXTableInfo* AXTree::GetTableInfo(const AXNode* const_table_node) const {
DCHECK(!GetTreeUpdateInProgressState());
DCHECK(const_table_node);
if (!const_table_node->IsTable() ||
const_table_node->IsInvisibleOrIgnored()) {
return nullptr;
}
// Note: the const_casts are here because we want this function to be able
// to be called from a const virtual function on AXNode. AXTableInfo is
// computed on demand and cached, but that's an implementation detail
// we want to hide from users of this API.
AXNode* table_node = const_cast<AXNode*>(const_table_node);
AXTree* tree = const_cast<AXTree*>(this);
const auto& cached = table_info_map_.find(table_node->id());
if (cached != table_info_map_.end()) {
// Get existing table info, and update if invalid because the
// tree has changed since the last time we accessed it.
AXTableInfo* table_info = cached->second.get();
if (!table_info->valid()) {
if (!table_info->Update()) {
// If Update() returned false, this is no longer a valid table.
// Remove it from the map.
table_info_map_.erase(table_node->id());
return nullptr;
}
}
return table_info;
}
AXTableInfo* table_info = AXTableInfo::Create(tree, table_node);
DCHECK(table_info);
table_info_map_[table_node->id()] = base::WrapUnique<AXTableInfo>(table_info);
return table_info;
}
std::string AXTree::ToString(bool verbose) const {
return "AXTree" + data_.ToString() + "\n" + TreeToString(root_, 0, verbose);
}
AXNode* AXTree::CreateNode(AXNode* parent,
AXNodeID id,
size_t index_in_parent,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
// |update_state| must already contain information about all of the expected
// changes and invalidations to apply. If any of these are missing, observers
// may not be notified of changes.
SANITIZER_CHECK(id != kInvalidAXNodeID);
DCHECK(!GetFromId(id));
DCHECK_GT(update_state->GetPendingCreateNodeCount(id), 0);
DCHECK(update_state->InvalidatesUnignoredCachedValues(id));
DCHECK(!parent ||
update_state->InvalidatesUnignoredCachedValues(parent->id()));
update_state->DecrementPendingCreateNodeCount(id);
update_state->new_node_ids.insert(id);
// If this node is the root, use the given index_in_parent as the unignored
// index in parent to provide consistency with index_in_parent.
auto node = std::make_unique<AXNode>(this, parent, id, index_in_parent,
parent ? 0 : index_in_parent);
auto emplaced = id_map_.emplace(id, std::move(node));
// There should not have been a node already in the map with the same id.
DCHECK(emplaced.second);
return emplaced.first->second.get();
}
bool AXTree::ComputePendingChanges(const AXTreeUpdate& update,
AXTreeUpdateState* update_state) {
DCHECK_EQ(AXTreePendingStructureStatus::kNotStarted,
update_state->pending_update_status)
<< "Pending changes have already started being computed.";
update_state->pending_update_status =
AXTreePendingStructureStatus::kComputing;
// The ID of the current root is temporarily stored in `update_state`, but
// reset after all pending updates have been computed in order to avoid stale
// data hanging around.
base::AutoReset<std::optional<AXNodeID>> pending_root_id_resetter(
&update_state->pending_root_id,
root_ ? std::make_optional<AXNodeID>(root_->id()) : std::nullopt);
if (update.has_tree_data && data_ != update.tree_data) {
update_state->old_tree_data = data_;
update_state->new_tree_data = update.tree_data;
}
update_state->updated_nodes = update.nodes;
// We distinguish between updating the root, e.g. changing its children or
// some of its attributes, or replacing the root completely. If the root is
// being updated, update.node_id_to_clear should hold the current root's ID.
// Otherwise if the root is being replaced, update.root_id should hold the ID
// of the new root.
if (update.node_id_to_clear != kInvalidAXNodeID) {
if (AXNode* cleared_node = GetFromId(update.node_id_to_clear)) {
DCHECK(root_);
if (cleared_node == root_ &&
update.root_id != update_state->pending_root_id) {
// Only destroy the root if the root was replaced and not if it's simply
// updated. To figure out if the root was simply updated, we compare
// the ID of the new root with the existing root ID.
MarkSubtreeForDestruction(*update_state->pending_root_id, update_state);
}
// If the tree has been marked for destruction because the root will be
// replaced, there is nothing more to clear.
if (update_state->ShouldPendingNodeExistInTree(root_->id())) {
update_state->invalidate_unignored_cached_values_ids.insert(
cleared_node->id());
update_state->ClearLastKnownPendingNodeData(cleared_node->id());
for (AXNode* child : cleared_node->children()) {
MarkSubtreeForDestruction(child->id(), update_state);
}
}
}
}
if (is_focused_node_always_unignored_ && update_state->old_tree_data &&
update_state->new_tree_data) {
// Ensure that if the focused node has changed, any unignored cached values
// would be invalidated on both the previous as well as the new focus, in
// cases where their ignored state will be affected. This block is necessary
// in the rare situation when the focus node has changed but the previous or
// new focused nodes are not in the list of updated nodes, because their
// data has not been modified.
// TODO(nektar): This check is erroneous: It's missing a check of
// focused_tree_id. Fix after updating `AXNode::IsFocusedInThisTree`.
if (update_state->old_tree_data->focus_id != kInvalidAXNodeID) {
const AXNode* old_focus =
GetFromId(update_state->old_tree_data->focus_id);
if (old_focus &&
update_state->ShouldPendingNodeExistInTree(old_focus->id()) &&
!base::Contains(update_state->updated_nodes, old_focus->id(),
&AXNodeData::id)) {
update_state->updated_nodes.push_back(old_focus->data());
}
}
if (update_state->new_tree_data->focus_id != kInvalidAXNodeID) {
const AXNode* new_focus =
GetFromId(update_state->new_tree_data->focus_id);
if (new_focus &&
update_state->ShouldPendingNodeExistInTree(new_focus->id()) &&
!base::Contains(update_state->updated_nodes, new_focus->id(),
&AXNodeData::id)) {
update_state->updated_nodes.push_back(new_focus->data());
}
}
}
if (update.root_id != kInvalidAXNodeID) {
update_state->root_will_be_created =
!GetFromId(update.root_id) ||
!update_state->ShouldPendingNodeExistInTree(update.root_id);
}
// Populate |update_state| with all of the changes that will be performed
// on the tree during the update.
int number_of_inline_textboxes = 0;
for (const AXNodeData& new_data : update_state->updated_nodes) {
if (new_data.id == kInvalidAXNodeID)
continue;
bool is_new_root =
update_state->root_will_be_created && new_data.id == update.root_id;
if (!ComputePendingChangesToNode(new_data, is_new_root, update_state)) {
update_state->pending_update_status =
AXTreePendingStructureStatus::kFailed;
return false;
}
if (new_data.role == ax::mojom::Role::kInlineTextBox) {
number_of_inline_textboxes++;
}
}
// Track the number of inline text boxes for each AXTreeUpdate.
base::UmaHistogramBoolean("Accessibility.InlineTextBoxes.PresentInUpdate",
number_of_inline_textboxes > 0);
if (number_of_inline_textboxes > 0) {
base::UmaHistogramCounts1000("Accessibility.InlineTextBoxes.Count",
number_of_inline_textboxes);
}
update_state->pending_update_status = AXTreePendingStructureStatus::kComplete;
return true;
}
bool AXTree::ComputePendingChangesToNode(const AXNodeData& new_data,
bool is_new_root,
AXTreeUpdateState* update_state) {
// Compare every child's index in parent in the update with the existing
// index in parent. If the order has changed, invalidate the cached
// unignored index in parent.
for (size_t j = 0; j < new_data.child_ids.size(); j++) {
const AXNode* node = GetFromId(new_data.child_ids[j]);
if (node && node->GetIndexInParent() != j)
update_state->InvalidateParentNodeUnignoredCacheValues(node->id());
}
// If the node does not exist in the tree throw an error unless this
// is the new root and it can be created.
if (!update_state->ShouldPendingNodeExistInTree(new_data.id)) {
if (!is_new_root) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kNotInTree);
RecordError(*update_state,
base::StringPrintf(
"%d will not be in the tree and is not the new root",
new_data.id));
return false;
}
// Creation is implicit for new root nodes. If |new_data.id| is already
// pending for creation, then it must be a duplicate entry in the tree.
if (!update_state->IncrementPendingCreateNodeCount(new_data.id,
std::nullopt)) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kCreationPending);
RecordError(
*update_state,
base::StringPrintf(
"Node %d is already pending for creation, cannot be the new root",
new_data.id));
return false;
}
if (update_state->pending_root_id) {
MarkSubtreeForDestruction(*update_state->pending_root_id, update_state);
}
update_state->pending_root_id = new_data.id;
}
// Create a set of new child ids so we can use it to find the nodes that
// have been added and removed. Returns false if a duplicate is found.
std::set<AXNodeID> new_child_id_set;
for (AXNodeID new_child_id : new_data.child_ids) {
if (base::Contains(new_child_id_set, new_child_id)) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kDuplicateChild);
RecordError(*update_state,
base::StringPrintf("Node %d has duplicate child id %d",
new_data.id, new_child_id));
return false;
}
new_child_id_set.insert(new_child_id);
}
// If the node has not been initialized yet then its node data has either been
// cleared when handling |node_id_to_clear|, or it's a new node.
// In either case, all children must be created.
if (update_state->DoesPendingNodeRequireInit(new_data.id)) {
update_state->invalidate_unignored_cached_values_ids.insert(new_data.id);
// If this node has been cleared via |node_id_to_clear| or is a new node,
// the last-known parent's unignored cache needs to be updated.
update_state->InvalidateParentNodeUnignoredCacheValues(new_data.id);
for (AXNodeID child_id : new_child_id_set) {
// If a |child_id| is already pending for creation, then it must be a
// duplicate entry in the tree.
update_state->invalidate_unignored_cached_values_ids.insert(child_id);
if (!update_state->IncrementPendingCreateNodeCount(child_id,
new_data.id)) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kCreationPendingForChild);
RecordError(*update_state,
base::StringPrintf("Node %d is already pending for "
"creation, cannot be a new child",
child_id));
return false;
}
}
update_state->SetLastKnownPendingNodeData(&new_data);
return true;
}
const AXNodeData& old_data =
update_state->GetLastKnownPendingNodeData(new_data.id);
AXTreeData* old_tree_data = update_state->old_tree_data
? &update_state->old_tree_data.value()
: nullptr;
AXTreeData* new_tree_data = update_state->new_tree_data
? &update_state->new_tree_data.value()
: nullptr;
if (ComputeNodeIsIgnoredChanged(old_tree_data, old_data, new_tree_data,
new_data)) {
update_state->ignored_state_changed_ids.insert(new_data.id);
}
// Create a set of old child ids so we can use it to find the nodes that
// have been added and removed.
std::set<AXNodeID> old_child_id_set(old_data.child_ids.cbegin(),
old_data.child_ids.cend());
std::vector<AXNodeID> create_or_destroy_ids;
std::set_symmetric_difference(
old_child_id_set.cbegin(), old_child_id_set.cend(),
new_child_id_set.cbegin(), new_child_id_set.cend(),
std::back_inserter(create_or_destroy_ids));
// If the node has changed ignored state or there are any differences in
// its children, then its unignored cached values must be invalidated.
if (!create_or_destroy_ids.empty() ||
update_state->HasIgnoredChanged(new_data)) {
update_state->invalidate_unignored_cached_values_ids.insert(new_data.id);
// If this ignored state had changed also invalidate the parent.
update_state->InvalidateParentNodeUnignoredCacheValues(new_data.id);
}
for (AXNodeID child_id : create_or_destroy_ids) {
if (base::Contains(new_child_id_set, child_id)) {
// This is a serious error - nodes should never be reparented without
// first being removed from the tree. If a node exists in the tree already
// then adding it to a new parent would mean stealing the node from its
// old parent which hadn't been updated to reflect the change.
if (update_state->ShouldPendingNodeExistInTree(child_id)) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kReparent);
RecordError(*update_state,
base::StringPrintf("Node %d is not marked for destruction, "
"would be reparented to %d",
child_id, new_data.id));
return false;
}
// If a |child_id| is already pending for creation, then it must be a
// duplicate entry in the tree.
update_state->invalidate_unignored_cached_values_ids.insert(child_id);
if (!update_state->IncrementPendingCreateNodeCount(child_id,
new_data.id)) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kCreationPendingForChild);
RecordError(*update_state,
base::StringPrintf("Node %d is already pending for "
"creation, cannot be a new child",
child_id));
return false;
}
} else {
// If |child_id| does not exist in the new set, then it has
// been removed from |node|, and the subtree must be deleted.
MarkSubtreeForDestruction(child_id, update_state);
}
}
update_state->SetLastKnownPendingNodeData(&new_data);
return true;
}
bool AXTree::UpdateNode(const AXNodeData& src,
bool is_new_root,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
// This method updates one node in the tree based on serialized data
// received in an AXTreeUpdate. See AXTreeUpdate for pre and post
// conditions.
// Look up the node by id. If it's not found, then either the root
// of the tree is being swapped, or we're out of sync with the source
// and this is a serious error.
AXNode* node = GetFromId(src.id);
if (node) {
// Node is changing.
update_state->pending_node_ids.erase(node->id());
UpdateReverseRelations(node, src);
if (!update_state->IsCreatedNode(node) ||
update_state->IsReparentedNode(node)) {
update_state->old_node_id_to_data.insert(
std::make_pair(node->id(), node->TakeData()));
}
node->SetData(src);
} else {
// Node is created.
if (!is_new_root) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kNotInTree);
RecordError(*update_state,
base::StringPrintf(
"%d is not in the tree and not the new root", src.id));
return false;
}
node = CreateNode(nullptr, src.id, 0, update_state);
UpdateReverseRelations(node, src, /*is_new_node*/ true);
node->SetData(src);
}
// If we come across a page breaking object, mark the tree as a paginated root
if (src.GetBoolAttribute(ax::mojom::BoolAttribute::kIsPageBreakingObject))
has_pagination_support_ = true;
update_state->node_data_changed_ids.insert(node->id());
// First, delete nodes that used to be children of this node but aren't
// anymore.
DeleteOldChildren(node, src.child_ids, update_state);
// Now build a new children vector, reusing nodes when possible,
// and swap it in.
std::vector<raw_ptr<AXNode, VectorExperimental>> new_children;
bool success = CreateNewChildVector(
node, src.child_ids, &new_children, update_state);
node->SwapChildren(&new_children);
// Update the root of the tree if needed.
if (is_new_root) {
// Make sure root_ always points to something valid or null_, even inside
// DestroySubtree.
AXNode* old_root = root_;
root_ = node;
if (old_root && old_root != node) {
// Example of when occurs: the contents of an iframe are replaced.
DestroySubtree(old_root, update_state);
}
}
return success;
}
void AXTree::NotifySubtreeWillBeReparentedOrDeleted(
AXNode* node,
const AXTreeUpdateState* update_state) {
DCHECK(!GetTreeUpdateInProgressState());
if (node->id() == kInvalidAXNodeID)
return;
bool notify_reparented = update_state->IsReparentedNode(node);
bool notify_removed = !notify_reparented;
// Don't fire redundant remove notification in the case where the parent
// will become ignored at the same time.
if (notify_removed && node->parent() &&
base::Contains(update_state->ignored_state_changed_ids,
node->parent()->id()) &&
!node->parent()->IsIgnored()) {
notify_removed = false;
}
for (AXTreeObserver& observer : observers_) {
if (notify_reparented)
observer.OnSubtreeWillBeReparented(this, node);
if (notify_removed)
observer.OnSubtreeWillBeDeleted(this, node);
}
}
void AXTree::NotifyNodeWillBeReparentedOrDeleted(
AXNode& node,
const AXTreeUpdateState& update_state) {
DCHECK(!GetTreeUpdateInProgressState());
AXNodeID id = node.id();
if (id == kInvalidAXNodeID)
return;
table_info_map_.erase(id);
bool notify_reparented = update_state.IsReparentedNode(&node);
for (AXTreeObserver& observer : observers_) {
if (notify_reparented) {
observer.OnNodeWillBeReparented(this, &node);
} else {
observer.OnNodeWillBeDeleted(this, &node);
}
}
DCHECK(table_info_map_.find(id) == table_info_map_.end())
<< "Table info should never be recreated during node deletion";
}
void AXTree::RecursivelyNotifyNodeWillBeDeletedForTreeTeardown(
AXNode& node,
std::set<AXNodeID>& deleted_nodes) {
// TODO(crbug.com/366332767): Migrate tree observers to listen for tree
// teardown by observing AXTreeManager.
DCHECK(!GetTreeUpdateInProgressState());
if (node.id() == kInvalidAXNodeID) {
return;
}
deleted_nodes.insert(node.id());
observers_.Notify(&AXTreeObserver::OnNodeWillBeDeleted, this, &node);
for (ui::AXNode* child : node.children()) {
RecursivelyNotifyNodeWillBeDeletedForTreeTeardown(CHECK_DEREF(child),
deleted_nodes);
}
}
void AXTree::NotifyNodeHasBeenDeleted(AXNodeID node_id) {
DCHECK(!GetTreeUpdateInProgressState());
if (node_id == kInvalidAXNodeID)
return;
observers_.Notify(&AXTreeObserver::OnNodeDeleted, this, node_id);
}
void AXTree::NotifyNodeHasBeenReparentedOrCreated(
AXNode* node,
const AXTreeUpdateState* update_state) {
DCHECK(!GetTreeUpdateInProgressState());
if (node->id() == kInvalidAXNodeID)
return;
bool is_reparented = update_state->IsReparentedNode(node);
if (is_reparented) {
observers_.Notify(&AXTreeObserver::OnNodeReparented, this, node);
} else {
observers_.Notify(&AXTreeObserver::OnNodeCreated, this, node);
}
}
void AXTree::NotifyChildTreeConnectionChanged(AXNode* node,
AXTree* child_tree) {
DCHECK(node->tree() == this);
observers_.Notify(&AXTreeObserver::OnChildTreeConnectionChanged, node);
}
void AXTree::NotifyNodeAttributesWillChange(
AXNode* node,
AXTreeUpdateState& update_state,
const AXTreeData* optional_old_tree_data,
const AXNodeData& old_data,
const AXTreeData* optional_new_tree_data,
const AXNodeData& new_data) {
DCHECK(!GetTreeUpdateInProgressState());
if (new_data.id == kInvalidAXNodeID)
return;
observers_.Notify(&AXTreeObserver::OnNodeDataWillChange, this, old_data,
new_data);
}
#if BUILDFLAG(IS_LINUX)
void AXTree::ClearExtraAnnouncementNodes() {
if (!extra_announcement_nodes_) {
return;
}
for (auto& observer : observers()) {
observer.OnNodeWillBeDeleted(this,
&extra_announcement_nodes_->AssertiveNode());
observer.OnNodeWillBeDeleted(this,
&extra_announcement_nodes_->PoliteNode());
}
std::vector<AXNodeID> deleted_ids;
{
ScopedTreeUpdateInProgressStateSetter tree_update_in_progress(*this);
deleted_ids.push_back(extra_announcement_nodes_->AssertiveNode().id());
deleted_ids.push_back(extra_announcement_nodes_->PoliteNode().id());
extra_announcement_nodes_.reset();
}
for (const auto& deleted_id : deleted_ids) {
for (auto& observer : observers()) {
observer.OnNodeDeleted(this, deleted_id);
}
}
for (auto& observer : observers()) {
observer.OnAtomicUpdateFinished(
this, /*root_changed=*/false,
{{root_, AXTreeObserver::ChangeType::NODE_CHANGED}});
}
}
void AXTree::CreateExtraAnnouncementNodes() {
if (extra_announcement_nodes_) {
return;
}
std::vector<AXTreeObserver::Change> changes;
extra_announcement_nodes_ = std::make_unique<ExtraAnnouncementNodes>(root_);
{
ScopedTreeUpdateInProgressStateSetter tree_update_in_progress(*this);
}
if (extra_announcement_nodes_) {
for (auto& observer : observers()) {
observer.OnNodeCreated(this, &extra_announcement_nodes_->AssertiveNode());
observer.OnNodeCreated(this, &extra_announcement_nodes_->PoliteNode());
}
}
for (auto& observer : observers()) {
observer.OnAtomicUpdateFinished(this, /*root_changed=*/false, changes);
}
}
#endif // BUILDFLAG(IS_LINUX)
void AXTree::NotifyNodeAttributesHaveBeenChanged(
AXNode* node,
AXTreeUpdateState& update_state,
const AXTreeData* optional_old_tree_data,
const AXNodeData& old_data,
const AXTreeData* optional_new_tree_data,
const AXNodeData& new_data) {
DCHECK(!GetTreeUpdateInProgressState());
DCHECK(node);
DCHECK(node->id() != kInvalidAXNodeID);
// Do not fire generated events for initial empty document:
// The initial empty document and changes to it are uninteresting. It is a
// bit of a hack that may not need to exist in the future
// TODO(accessibility) Find a way to remove the initial empty document and the
// need for this special case.
if (node->GetRole() == ax::mojom::Role::kRootWebArea &&
old_data.child_ids.empty() && !node->GetParentCrossingTreeBoundary()) {
return;
}
observers_.Notify(&AXTreeObserver::OnNodeDataChanged, this, old_data,
new_data);
if (base::Contains(update_state.ignored_state_changed_ids, new_data.id)) {
observers_.Notify(&AXTreeObserver::OnIgnoredChanged, this, node,
node->IsIgnored());
}
// For performance reasons, it is better to skip processing and firing of
// events related to property changes for ignored nodes.
if (old_data.IsIgnored() || new_data.IsIgnored()) {
return;
}
if (old_data.role != new_data.role) {
observers_.Notify(&AXTreeObserver::OnRoleChanged, this, node, old_data.role,
new_data.role);
}
if (old_data.state != new_data.state) {
for (int32_t i = static_cast<int32_t>(ax::mojom::State::kNone) + 1;
i <= static_cast<int32_t>(ax::mojom::State::kMaxValue); ++i) {
ax::mojom::State state = static_cast<ax::mojom::State>(i);
// The ignored state has been already handled via `OnIgnoredChanged`.
if (state == ax::mojom::State::kIgnored)
continue;
if (old_data.HasState(state) != new_data.HasState(state)) {
observers_.Notify(&AXTreeObserver::OnStateChanged, this, node, state,
new_data.HasState(state));
}
}
}
auto string_callback = [this, node](ax::mojom::StringAttribute attr,
const std::string& old_string,
const std::string& new_string) {
DCHECK_NE(old_string, new_string);
observers_.Notify(&AXTreeObserver::OnStringAttributeChanged, this, node,
attr, old_string, new_string);
};
CallIfAttributeValuesChanged(old_data.string_attributes,
new_data.string_attributes, std::string(),
string_callback);
auto bool_callback = [this, node](ax::mojom::BoolAttribute attr,
const bool& old_bool,
const bool& new_bool) {
DCHECK_NE(old_bool, new_bool);
observers_.Notify(&AXTreeObserver::OnBoolAttributeChanged, this, node, attr,
new_bool);
};
CallIfAttributeValuesChanged(old_data.bool_attributes,
new_data.bool_attributes, false, bool_callback);
auto float_callback = [this, node](ax::mojom::FloatAttribute attr,
const float& old_float,
const float& new_float) {
DCHECK_NE(old_float, new_float);
observers_.Notify(&AXTreeObserver::OnFloatAttributeChanged, this, node,
attr, old_float, new_float);
};
CallIfAttributeValuesChanged(old_data.float_attributes,
new_data.float_attributes, 0.0f, float_callback);
auto int_callback = [this, node](ax::mojom::IntAttribute attr,
const int& old_int, const int& new_int) {
DCHECK_NE(old_int, new_int);
observers_.Notify(&AXTreeObserver::OnIntAttributeChanged, this, node, attr,
old_int, new_int);
};
CallIfAttributeValuesChanged(old_data.int_attributes, new_data.int_attributes,
0, int_callback);
auto intlist_callback = [this, node](
ax::mojom::IntListAttribute attr,
const std::vector<int32_t>& old_intlist,
const std::vector<int32_t>& new_intlist) {
observers_.Notify(&AXTreeObserver::OnIntListAttributeChanged, this, node,
attr, old_intlist, new_intlist);
};
CallIfAttributeValuesChanged(old_data.intlist_attributes,
new_data.intlist_attributes,
std::vector<int32_t>(), intlist_callback);
auto stringlist_callback =
[this, node](ax::mojom::StringListAttribute attr,
const std::vector<std::string>& old_stringlist,
const std::vector<std::string>& new_stringlist) {
observers_.Notify(&AXTreeObserver::OnStringListAttributeChanged, this,
node, attr, old_stringlist, new_stringlist);
};
CallIfAttributeValuesChanged(old_data.stringlist_attributes,
new_data.stringlist_attributes,
std::vector<std::string>(), stringlist_callback);
}
void AXTree::UpdateReverseRelations(AXNode* node,
const AXNodeData& new_data,
bool is_new_node) {
DCHECK(GetTreeUpdateInProgressState());
const AXNodeData& old_data = node->data();
// This is the id of the source node, which does not change between the old
// and the new data.
int id = node->id();
for (const auto& attr : kReverseRelationIntAttributes) {
int32_t old_relation_target_id = old_data.GetIntAttribute(attr);
int32_t new_relation_target_id = new_data.GetIntAttribute(attr);
if (is_new_node || old_relation_target_id != new_relation_target_id) {
auto& map = int_reverse_relations_[attr];
if (!is_new_node) {
// Remove stale values from map.
if (map.find(old_relation_target_id) != map.end()) {
map[old_relation_target_id].erase(id);
if (map[old_relation_target_id].empty()) {
map.erase(old_relation_target_id);
}
}
}
int_reverse_relations_[attr][new_relation_target_id].insert(id);
}
}
for (const auto& attr : kReverseRelationIntListAttributes) {
const std::vector<int32_t>& old_idlist = old_data.GetIntListAttribute(attr);
const std::vector<int32_t>& new_idlist = new_data.GetIntListAttribute(attr);
if (is_new_node || old_idlist != new_idlist) {
auto& map = intlist_reverse_relations_[attr];
if (!is_new_node) {
// Remove stale values from map.
for (AXNodeID old_relation_target_id : old_idlist) {
if (map.find(old_relation_target_id) != map.end()) {
map[old_relation_target_id].erase(id);
if (map[old_relation_target_id].empty()) {
map.erase(old_relation_target_id);
}
}
}
}
for (AXNodeID new_relation_target_id : new_idlist) {
map[new_relation_target_id].insert(id);
}
}
}
// Update child tree id reverse map.
std::optional<AXTreeID> old_tree_id = old_data.GetChildTreeID();
std::optional<AXTreeID> new_tree_id = new_data.GetChildTreeID();
if (old_tree_id == new_tree_id) {
return;
}
if (old_tree_id) {
child_tree_id_reverse_map_[*old_tree_id].erase(id);
}
if (new_tree_id) {
child_tree_id_reverse_map_[*new_tree_id].insert(id);
}
}
bool AXTree::ValidatePendingChangesComplete(
const AXTreeUpdateState& update_state) {
if (!update_state.pending_node_ids.empty()) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kPendingNodes);
std::string error = "Nodes left pending by the update:";
for (const AXNodeID pending_id : update_state.pending_node_ids)
error += base::StringPrintf(" %d", pending_id);
RecordError(update_state, error);
return false;
}
if (!update_state.node_id_to_pending_data.empty()) {
std::string destroy_subtree_ids;
std::string destroy_node_ids;
std::string create_node_ids;
bool has_pending_changes = false;
for (auto&& pair : update_state.node_id_to_pending_data) {
const AXNodeID pending_id = pair.first;
const std::unique_ptr<PendingStructureChanges>& data = pair.second;
if (data->DoesNodeExpectAnyStructureChanges()) {
if (data->DoesNodeExpectSubtreeWillBeDestroyed())
destroy_subtree_ids += base::StringPrintf(" %d", pending_id);
if (data->DoesNodeExpectNodeWillBeDestroyed())
destroy_node_ids += base::StringPrintf(" %d", pending_id);
if (data->DoesNodeExpectNodeWillBeCreated())
create_node_ids += base::StringPrintf(" %d", pending_id);
has_pending_changes = true;
}
}
if (has_pending_changes) {
ACCESSIBILITY_TREE_UNSERIALIZE_ERROR_HISTOGRAM(
AXTreeUnserializeError::kPendingChanges);
RecordError(
update_state,
base::StringPrintf(
"Changes left pending by the update; "
"destroy subtrees: %s, destroy nodes: %s, create nodes: %s",
destroy_subtree_ids.c_str(), destroy_node_ids.c_str(),
create_node_ids.c_str()));
}
return !has_pending_changes;
}
return true;
}
void AXTree::MarkSubtreeForDestruction(AXNodeID node_id,
AXTreeUpdateState* update_state) {
update_state->IncrementPendingDestroySubtreeCount(node_id);
MarkNodesForDestructionRecursive(node_id, update_state);
}
void AXTree::MarkNodesForDestructionRecursive(AXNodeID node_id,
AXTreeUpdateState* update_state) {
// If this subtree has already been marked for destruction, return so
// we don't walk it again.
if (!update_state->ShouldPendingNodeExistInTree(node_id))
return;
const AXNodeData& last_known_data =
update_state->GetLastKnownPendingNodeData(node_id);
update_state->IncrementPendingDestroyNodeCount(node_id);
for (AXNodeID child_id : last_known_data.child_ids) {
MarkNodesForDestructionRecursive(child_id, update_state);
}
}
void AXTree::DestroySubtree(AXNode* node,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
// |update_state| must already contain information about all of the expected
// changes and invalidations to apply. If any of these are missing, observers
// may not be notified of changes.
DCHECK(update_state);
DCHECK_GT(update_state->GetPendingDestroySubtreeCount(node->id()), 0);
DCHECK(!node->parent() ||
update_state->InvalidatesUnignoredCachedValues(node->parent()->id()));
update_state->DecrementPendingDestroySubtreeCount(node->id());
DestroyNodeAndSubtree(node, update_state);
}
void AXTree::DestroyNodeAndSubtree(AXNode* node,
AXTreeUpdateState* update_state) {
AXNodeID id = node->id();
DCHECK(GetTreeUpdateInProgressState());
DCHECK(!update_state || update_state->GetPendingDestroyNodeCount(id) > 0);
// Clear out any reverse relations.
static base::NoDestructor<AXNodeData> empty_data;
UpdateReverseRelations(node, *empty_data);
auto iter = id_map_.find(id);
CHECK(iter != id_map_.end());
std::unique_ptr<AXNode> node_to_delete = std::move(iter->second);
id_map_.erase(iter);
node = nullptr;
if (!update_state) {
// `update_state` will only be nullptr when destroying the entire tree. This
// is then our last chance to notify that the nodes were deleted.
observers_.Notify(&AXTreeObserver::OnNodeDeleted, this, id);
}
for (ui::AXNode* child : node_to_delete->children()) {
DestroyNodeAndSubtree(child, update_state);
}
if (update_state) {
update_state->pending_node_ids.erase(id);
update_state->DecrementPendingDestroyNodeCount(id);
update_state->new_node_ids.erase(id);
update_state->node_data_changed_ids.erase(id);
if (update_state->IsReparentedNode(node_to_delete.get())) {
update_state->old_node_id_to_data.insert(
std::make_pair(id, node_to_delete->TakeData()));
}
}
}
void AXTree::DeleteOldChildren(AXNode* node,
const std::vector<AXNodeID>& new_child_ids,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
// Create a set of child ids in |src| for fast lookup, we know the set does
// not contain duplicate entries already, because that was handled when
// populating |update_state| with information about all of the expected
// changes to be applied.
std::set<AXNodeID> new_child_id_set(new_child_ids.begin(),
new_child_ids.end());
// Delete the old children.
for (AXNode* child : node->children()) {
if (!base::Contains(new_child_id_set, child->id()))
DestroySubtree(child, update_state);
}
}
bool AXTree::CreateNewChildVector(
AXNode* node,
const std::vector<AXNodeID>& new_child_ids,
std::vector<raw_ptr<AXNode, VectorExperimental>>* new_children,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
bool success = true;
#if BUILDFLAG(IS_LINUX)
// If the root node has children added, clear the extra announcement nodes,
// which should always have their indices as the last two children of the root
// node. They will be recreated if needed, and given the correct indices.
if (node == root() && extra_announcement_nodes_) {
ClearExtraAnnouncementNodes();
}
#endif // BUILDFLAG(IS_LINUX)
for (size_t i = 0; i < new_child_ids.size(); ++i) {
AXNodeID child_id = new_child_ids[i];
AXNode* child = GetFromId(child_id);
if (child) {
if (child->parent() != node) {
// This is a serious error - nodes should never be reparented.
// If this case occurs, continue so this node isn't left in an
// inconsistent state, but return failure at the end.
if (child->parent()) {
RecordError(*update_state,
base::StringPrintf("Node %d reparented from %d to %d",
child->id(), child->parent()->id(),
node->id()));
} else {
std::ostringstream error;
error << "Invalid tree construction: a previous root or orphaned "
"node is being reparented."
<< "\n* root_will_be_created = "
<< update_state->root_will_be_created
<< "\n* pending_root_id = "
<< (update_state->pending_root_id
? *update_state->pending_root_id
: kInvalidAXNodeID)
<< "\n* new parent = " << *node
<< "\n* old root or orphaned child = " << *child;
RecordError(*update_state, error.str(), /* fatal */ true);
}
success = false;
continue;
}
child->SetIndexInParent(i);
} else {
child = CreateNode(node, child_id, i, update_state);
update_state->pending_node_ids.insert(child->id());
}
new_children->push_back(child);
}
return success;
}
AXNode* AXTree::GetUnignoredAncestorFromId(AXNodeID node_id) const {
AXNode* node = GetFromId(node_id);
// We can't simply call `AXNode::GetUnignoredParent()` because the node's
// unignored cached values may be out-of-date.
while (node && node->IsIgnored())
node = node->parent();
return node;
}
AXNodeID AXTree::GetNextNegativeInternalNodeId() {
AXNodeID return_value = next_negative_internal_node_id_;
next_negative_internal_node_id_--;
if (next_negative_internal_node_id_ > 0)
next_negative_internal_node_id_ = -1;
return return_value;
}
void AXTree::PopulateOrderedSetItemsMap(
const AXNode& original_node,
const AXNode* ordered_set,
OrderedSetItemsMap* items_map_to_be_populated) const {
// Ignored nodes are not a part of ordered sets.
if (original_node.IsIgnored())
return;
// Not all ordered set containers support hierarchical level, but their set
// items may support hierarchical level. For example, container <tree> does
// not support level, but <treeitem> supports level. For ordered sets like
// this, the set container (e.g. <tree>) will take on the min of the levels
// of its direct children(e.g. <treeitem>), if the children's levels are
// defined.
std::optional<int> ordered_set_min_level =
ordered_set->GetHierarchicalLevel();
for (AXNode::UnignoredChildIterator child =
ordered_set->UnignoredChildrenBegin();
child != ordered_set->UnignoredChildrenEnd(); ++child) {
std::optional<int> child_level = child->GetHierarchicalLevel();
if (child_level) {
ordered_set_min_level = ordered_set_min_level
? std::min(child_level, ordered_set_min_level)
: child_level;
}
}
RecursivelyPopulateOrderedSetItemsMap(original_node, ordered_set, ordered_set,
ordered_set_min_level, std::nullopt,
items_map_to_be_populated);
// If after RecursivelyPopulateOrderedSetItemsMap() call, the corresponding
// level (i.e. |ordered_set_min_level|) does not exist in
// |items_map_to_be_populated|, and |original_node| equals |ordered_set|, we
// know |original_node| is an empty ordered set and contains no set items.
// However, |original_node| may still have set size attribute, so we still
// want to add this empty set (i.e. original_node/ordered_set) to
// |items_map_to_be_populated|.
if (&original_node == ordered_set &&
!items_map_to_be_populated->HierarchicalLevelExists(
ordered_set_min_level)) {
items_map_to_be_populated->Add(ordered_set_min_level,
OrderedSetContent(&original_node));
}
}
void AXTree::RecursivelyPopulateOrderedSetItemsMap(
const AXNode& original_node,
const AXNode* ordered_set,
const AXNode* local_parent,
std::optional<int> ordered_set_min_level,
std::optional<int> prev_level,
OrderedSetItemsMap* items_map_to_be_populated) const {
// For optimization purpose, we want to only populate set items that are
// direct descendants of |ordered_set|, since we will only be calculating
// PosInSet & SetSize of items of that level. So we skip items on deeper
// levels by stop searching recursively on node |local_parent| that turns out
// to be an ordered set whose role matches that of |ordered_set|. However,
// when we encounter a flattened structure such as the following:
// <div role="tree">
// <div role="treeitem" aria-level="1"></div>
// <div role="treeitem" aria-level="2"></div>
// <div role="treeitem" aria-level="3"></div>
// </div>
// This optimization won't apply, we will end up populating items from all
// levels.
if (ordered_set->GetRole() == local_parent->GetRole() &&
ordered_set != local_parent)
return;
for (AXNode::UnignoredChildIterator itr =
local_parent->UnignoredChildrenBegin();
itr != local_parent->UnignoredChildrenEnd(); ++itr) {
const AXNode* child = itr.get();
// Invisible children should not be counted.
// However, in the collapsed container case (e.g. a combobox), items can
// still be chosen/navigated. However, the options in these collapsed
// containers are historically marked invisible. Therefore, in that case,
// count the invisible items. Only check 3 levels up, as combobox containers
// are never higher.
if (child->data().IsInvisible() && !IsCollapsed(local_parent) &&
!IsCollapsed(local_parent->parent()) &&
(!local_parent->parent() ||
!IsCollapsed(local_parent->parent()->parent()))) {
continue;
}
std::optional<int> curr_level = child->GetHierarchicalLevel();
// Add child to |items_map_to_be_populated| if role matches with the role of
// |ordered_set|. If role of node is kRadioButton, don't add items of other
// roles, even if item role matches the role of |ordered_set|.
if (child->GetRole() == ax::mojom::Role::kComment ||
(original_node.GetRole() == ax::mojom::Role::kRadioButton &&
child->GetRole() == ax::mojom::Role::kRadioButton) ||
(original_node.GetRole() != ax::mojom::Role::kRadioButton &&
child->SetRoleMatchesItemRole(ordered_set))) {
// According to WAI-ARIA spec, some ordered set items do not support
// hierarchical level while its ordered set container does. For example,
// <tab> does not support level, while <tablist> supports level.
// https://www.w3.org/WAI/PF/aria/roles#tab
// https://www.w3.org/WAI/PF/aria/roles#tablist
// For this special case, when we add set items (e.g. tab) to
// |items_map_to_be_populated|, set item is placed at the same level as
// its container (e.g. tablist) in |items_map_to_be_populated|.
if (!curr_level && child->GetUnignoredParent() == ordered_set)
curr_level = ordered_set_min_level;
// We only add child to |items_map_to_be_populated| if the child set item
// is at the same hierarchical level as |ordered_set|'s level.
if (!items_map_to_be_populated->HierarchicalLevelExists(curr_level)) {
bool use_ordered_set = child->SetRoleMatchesItemRole(ordered_set) &&
ordered_set_min_level == curr_level;
const AXNode* child_ordered_set =
use_ordered_set ? ordered_set : nullptr;
items_map_to_be_populated->Add(curr_level,
OrderedSetContent(child_ordered_set));
}
items_map_to_be_populated->AddItemToBack(curr_level, child);
}
// If |child| is an ignored container for ordered set and should not be used
// to contribute to |items_map_to_be_populated|, we recurse into |child|'s
// descendants to populate |items_map_to_be_populated|.
if (child->IsIgnoredContainerForOrderedSet()) {
RecursivelyPopulateOrderedSetItemsMap(original_node, ordered_set, child,
ordered_set_min_level, curr_level,
items_map_to_be_populated);
}
// If |curr_level| goes up one level from |prev_level|, which indicates
// the ordered set of |prev_level| is closed, we add a new OrderedSetContent
// on the previous level of |items_map_to_be_populated| to signify this.
// Consider the example below:
// <div role="tree">
// <div role="treeitem" aria-level="1"></div>
// <!--- set1-level2 -->
// <div role="treeitem" aria-level="2"></div>
// <div role="treeitem" aria-level="2"></div> <--|prev_level|
// <div role="treeitem" aria-level="1" id="item2-level1"> <--|curr_level|
// </div>
// <!--- set2-level2 -->
// <div role="treeitem" aria-level="2"></div>
// <div role="treeitem" aria-level="2"></div>
// </div>
// |prev_level| is on the last item of "set1-level2" and |curr_level| is on
// "item2-level1". Since |curr_level| is up one level from |prev_level|, we
// already completed adding all items from "set1-level2" to
// |items_map_to_be_populated|. So we close up "set1-level2" by adding a new
// OrderedSetContent to level 2. When |curr_level| ends up on the items of
// "set2-level2" next, it has a fresh new set to be populated.
if (child->SetRoleMatchesItemRole(ordered_set) && curr_level < prev_level)
items_map_to_be_populated->Add(prev_level, OrderedSetContent());
prev_level = curr_level;
}
}
// Given an ordered_set, compute pos_in_set and set_size for all of its items
// and store values in cache.
// Ordered_set should never be nullptr.
void AXTree::ComputeSetSizePosInSetAndCache(const AXNode& node,
const AXNode* ordered_set) {
DCHECK(ordered_set);
// Set items role::kComment and role::kDisclosureTriangleGrouped and
// role::kRadioButton are special cases and do not necessarily need to be
// contained in an ordered set.
if (node.GetRole() != ax::mojom::Role::kComment &&
node.GetRole() != ax::mojom::Role::kDisclosureTriangle &&
node.GetRole() != ax::mojom::Role::kDisclosureTriangleGrouped &&
node.GetRole() != ax::mojom::Role::kRadioButton &&
!node.SetRoleMatchesItemRole(ordered_set) && !node.IsOrderedSet()) {
return;
}
// Find all items within ordered_set and add to |items_map_to_be_populated|.
OrderedSetItemsMap items_map_to_be_populated;
PopulateOrderedSetItemsMap(node, ordered_set, &items_map_to_be_populated);
// If ordered_set role is kComboBoxSelect and it wraps a kMenuListPopUp, then
// we would like it to inherit the SetSize from the kMenuListPopUp it wraps.
// To do this, we treat the kMenuListPopUp as the ordered_set and eventually
// assign its SetSize value to the kComboBoxSelect.
if (node.GetRole() == ax::mojom::Role::kComboBoxSelect &&
node.GetUnignoredChildCount() > 0) {
// kPopUpButtons are only allowed to contain one kMenuListPopUp.
// The single element is guaranteed to be a kMenuListPopUp because that is
// the only item role that matches the ordered set role of kPopUpButton.
// Please see AXNode::SetRoleMatchesItemRole for more details.
OrderedSetContent* set_content =
items_map_to_be_populated.GetFirstOrderedSetContent();
if (set_content && set_content->set_items_.size() == 1) {
const AXNode* menu_list_popup = set_content->set_items_.front();
if (menu_list_popup->GetRole() == ax::mojom::Role::kMenuListPopup) {
items_map_to_be_populated.Clear();
PopulateOrderedSetItemsMap(node, menu_list_popup,
&items_map_to_be_populated);
set_content = items_map_to_be_populated.GetFirstOrderedSetContent();
// Replace |set_content|'s ordered set container with |node|
// (Role::kPopUpButton), which acts as the set container for nodes with
// Role::kMenuListOptions (children of |menu_list_popup|).
if (set_content)
set_content->ordered_set_ = &node;
}
}
}
// Iterate over all items from OrderedSetItemsMap to compute and cache each
// ordered set item's PosInSet and SetSize and corresponding ordered set
// container's SetSize.
for (auto element : items_map_to_be_populated.items_map_) {
for (const OrderedSetContent& ordered_set_content : element.second) {
ComputeSetSizePosInSetAndCacheHelper(ordered_set_content);
}
}
}
void AXTree::ComputeSetSizePosInSetAndCacheHelper(
const OrderedSetContent& ordered_set_content) {
// Keep track of number of items in the set.
int32_t num_elements = 0;
// Keep track of largest ordered set item's |aria-setsize| attribute value.
int32_t max_item_set_size_from_attribute = 0;
for (const AXNode* item : ordered_set_content.set_items_) {
// |item|'s PosInSet value is the maximum of accumulated number of
// elements count and the value from its |aria-posinset| attribute.
int32_t pos_in_set_value =
std::max(num_elements + 1,
item->GetIntAttribute(ax::mojom::IntAttribute::kPosInSet));
// For |item| that has defined hierarchical level and |aria-posinset|
// attribute, the attribute value takes precedence.
// Note: According to WAI-ARIA spec, items that support
// |aria-posinset| do not necessarily support hierarchical level.
if (item->GetHierarchicalLevel() &&
item->HasIntAttribute(ax::mojom::IntAttribute::kPosInSet))
pos_in_set_value =
item->GetIntAttribute(ax::mojom::IntAttribute::kPosInSet);
num_elements = pos_in_set_value;
// Cache computed PosInSet value for |item|.
node_set_size_pos_in_set_info_map_[item->id()] = NodeSetSizePosInSetInfo();
node_set_size_pos_in_set_info_map_[item->id()].pos_in_set =
pos_in_set_value;
// Track the largest set size for this OrderedSetContent.
max_item_set_size_from_attribute =
std::max(max_item_set_size_from_attribute,
item->GetIntAttribute(ax::mojom::IntAttribute::kSetSize));
} // End of iterating over each item in |ordered_set_content|.
// The SetSize of an ordered set (and all of its items) is the maximum of
// the following values:
// 1. The number of elements in the ordered set.
// 2. The largest item set size from |aria-setsize| attribute.
// 3. The ordered set container's |aria-setsize| attribute value.
int32_t set_size_value =
std::max(num_elements, max_item_set_size_from_attribute);
// Cache the hierarchical level and set size of |ordered_set_content|'s set
// container, if the container exists.
if (const AXNode* ordered_set = ordered_set_content.ordered_set_) {
set_size_value = std::max(
set_size_value,
ordered_set->GetIntAttribute(ax::mojom::IntAttribute::kSetSize));
// Cache |ordered_set|'s hierarchical level.
std::optional<int> ordered_set_level = ordered_set->GetHierarchicalLevel();
if (node_set_size_pos_in_set_info_map_.find(ordered_set->id()) ==
node_set_size_pos_in_set_info_map_.end()) {
node_set_size_pos_in_set_info_map_[ordered_set->id()] =
NodeSetSizePosInSetInfo();
node_set_size_pos_in_set_info_map_[ordered_set->id()]
.lowest_hierarchical_level = ordered_set_level;
} else if (node_set_size_pos_in_set_info_map_[ordered_set->id()]
.lowest_hierarchical_level > ordered_set_level) {
node_set_size_pos_in_set_info_map_[ordered_set->id()]
.lowest_hierarchical_level = ordered_set_level;
}
// Cache |ordered_set|'s set size.
node_set_size_pos_in_set_info_map_[ordered_set->id()].set_size =
set_size_value;
}
// Cache the set size of |ordered_set_content|'s set items.
for (const AXNode* item : ordered_set_content.set_items_) {
// If item's hierarchical level and |aria-setsize| attribute are specified,
// the item's |aria-setsize| value takes precedence.
if (item->GetHierarchicalLevel() &&
item->HasIntAttribute(ax::mojom::IntAttribute::kSetSize))
node_set_size_pos_in_set_info_map_[item->id()].set_size =
item->GetIntAttribute(ax::mojom::IntAttribute::kSetSize);
else
node_set_size_pos_in_set_info_map_[item->id()].set_size = set_size_value;
} // End of iterating over each item in |ordered_set_content|.
}
std::optional<int> AXTree::GetPosInSet(const AXNode& node) {
if (node.IsIgnored()) {
return std::nullopt;
}
if ((node.GetRole() == ax::mojom::Role::kComboBoxSelect ||
node.GetRole() == ax::mojom::Role::kPopUpButton) &&
node.GetUnignoredChildCount() == 0 &&
node.HasIntAttribute(ax::mojom::IntAttribute::kPosInSet)) {
return node.GetIntAttribute(ax::mojom::IntAttribute::kPosInSet);
}
if (node_set_size_pos_in_set_info_map_.find(node.id()) !=
node_set_size_pos_in_set_info_map_.end()) {
// If item's id is in the cache, return stored PosInSet value.
return node_set_size_pos_in_set_info_map_[node.id()].pos_in_set;
}
if (GetTreeUpdateInProgressState())
return std::nullopt;
// Only allow this to be called on nodes that can hold PosInSet values,
// which are defined in the ARIA spec.
if (!node.IsOrderedSetItem()) {
return std::nullopt;
}
const AXNode* ordered_set = node.GetOrderedSet();
if (!ordered_set)
return std::nullopt;
ComputeSetSizePosInSetAndCache(node, ordered_set);
std::optional<int> pos_in_set =
node_set_size_pos_in_set_info_map_[node.id()].pos_in_set;
if (pos_in_set.has_value() && pos_in_set.value() < 1)
return std::nullopt;
return pos_in_set;
}
std::optional<int> AXTree::GetSetSize(const AXNode& node) {
if (node.IsIgnored()) {
return std::nullopt;
};
if ((node.GetRole() == ax::mojom::Role::kComboBoxSelect ||
node.GetRole() == ax::mojom::Role::kPopUpButton) &&
node.GetUnignoredChildCount() == 0 &&
node.HasIntAttribute(ax::mojom::IntAttribute::kSetSize)) {
return node.GetIntAttribute(ax::mojom::IntAttribute::kSetSize);
}
if (node_set_size_pos_in_set_info_map_.find(node.id()) !=
node_set_size_pos_in_set_info_map_.end()) {
// If item's id is in the cache, return stored SetSize value.
return node_set_size_pos_in_set_info_map_[node.id()].set_size;
}
if (GetTreeUpdateInProgressState())
return std::nullopt;
// Only allow this to be called on nodes that can hold SetSize values, which
// are defined in the ARIA spec. However, we allow set-like items to receive
// SetSize values for internal purposes.
if ((!node.IsOrderedSetItem() && !node.IsOrderedSet()) ||
node.IsEmbeddedGroup()) {
return std::nullopt;
}
// If |node| is an ordered set item-like, find its outerlying ordered set.
// Otherwise, |node| is the ordered set.
const AXNode* ordered_set = &node;
if (node.IsOrderedSetItem())
ordered_set = node.GetOrderedSet();
if (!ordered_set)
return std::nullopt;
// For popup buttons that control a single element, inherit the controlled
// item's SetSize. Skip this block if the popup button controls itself.
if (node.GetRole() == ax::mojom::Role::kPopUpButton ||
node.GetRole() == ax::mojom::Role::kComboBoxSelect) {
const auto& controls_ids =
node.GetIntListAttribute(ax::mojom::IntListAttribute::kControlsIds);
if (controls_ids.size() == 1 && GetFromId(controls_ids[0]) &&
controls_ids[0] != node.id()) {
const AXNode& controlled_item = *GetFromId(controls_ids[0]);
std::optional<int> controlled_item_set_size = GetSetSize(controlled_item);
node_set_size_pos_in_set_info_map_[node.id()].set_size =
controlled_item_set_size;
return controlled_item_set_size;
}
}
// Compute, cache, then return.
ComputeSetSizePosInSetAndCache(node, ordered_set);
std::optional<int> set_size =
node_set_size_pos_in_set_info_map_[node.id()].set_size;
if (set_size.has_value() && set_size.value() < 0)
return std::nullopt;
return set_size;
}
AXSelection AXTree::GetSelection() const {
// TODO(accessibility): do not create a selection object every time it's
// requested. Either switch AXSelection to getters that computes selection
// data upon request or provide an invalidation mechanism.
return AXSelection(*this);
}
AXSelection AXTree::GetUnignoredSelection() const {
return GetSelection().ToUnignoredSelection();
}
bool AXTree::GetTreeUpdateInProgressState() const {
return tree_update_in_progress_;
}
void AXTree::SetTreeUpdateInProgressState(bool set_tree_update_value) {
tree_update_in_progress_ = set_tree_update_value;
}
bool AXTree::HasPaginationSupport() const {
return has_pagination_support_;
}
void AXTree::NotifyTreeManagerWillBeRemoved(AXTreeID previous_tree_id) {
if (previous_tree_id == AXTreeIDUnknown())
return;
observers_.Notify(&AXTreeObserver::OnTreeManagerWillBeRemoved,
previous_tree_id);
}
void AXTree::RecordError(const AXTreeUpdateState& update_state,
std::string new_error,
bool is_fatal) {
// Aggregate error with previous errors.
if (!error_.empty())
error_ = error_ + "\n"; // Add visual separation between errors.
error_ = error_ + new_error;
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION)
// Suppress fatal error logging in builds that target fuzzing, as fuzzers
// generate invalid trees by design to shake out bugs.
is_fatal = false;
#elif AX_FAIL_FAST_BUILD()
// In fast-failing-builds, crash immediately with a full message, otherwise
// rely on UnrecoverableAccessibilityError(), which will not crash until
// multiple errors occur.
// TODO(accessibility) Make AXTree errors fatal in Canary and Dev builds, as
// they indicate fundamental problems in part of the engine. They are much
// less frequent than in the past -- it should not be highimpact on users.
is_fatal = true;
#endif
std::string tree_str = TreeToString(root_, 0, false);
std::string tree_update_str = update_state.pending_tree_update
->ToString(
/*verbose=*/false)
.substr(0, 1000);
std::ostringstream verbose_error;
verbose_error << new_error << "\n** Pending tree update **\n"
<< tree_update_str << "** Root **\n"
<< root() << "\n** AXTreeData **\n"
<< data_.ToString() + "\n** AXTree **\n"
<< tree_str.substr(0, 2000);
LOG_IF(FATAL, is_fatal) << verbose_error.str();
// If this is the first error, will dump without crashing in
// RenderFrameHostImpl::AccessibilityFatalError().
static auto* const ax_tree_error_key = base::debug::AllocateCrashKeyString(
"ax_tree_error", base::debug::CrashKeySize::Size256);
static auto* const ax_tree_update_key = base::debug::AllocateCrashKeyString(
"ax_tree_update", base::debug::CrashKeySize::Size256);
static auto* const ax_tree_key = base::debug::AllocateCrashKeyString(
"ax_tree", base::debug::CrashKeySize::Size256);
static auto* const ax_tree_data_key = base::debug::AllocateCrashKeyString(
"ax_tree_data", base::debug::CrashKeySize::Size256);
// Log additional crash keys so we can debug bad tree updates.
base::debug::SetCrashKeyString(ax_tree_error_key, new_error);
base::debug::SetCrashKeyString(ax_tree_update_key, tree_update_str);
base::debug::SetCrashKeyString(ax_tree_key, tree_str);
base::debug::SetCrashKeyString(ax_tree_data_key, data_.ToString());
LOG(ERROR) << verbose_error.str();
}
} // namespace ui
|