1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/ax_tree_combiner.h"
#include "ui/accessibility/ax_enums.mojom.h"
#include "ui/accessibility/ax_tree.h"
#include "ui/gfx/geometry/rect_f.h"
namespace ui {
AXTreeCombiner::AXTreeCombiner() = default;
AXTreeCombiner::~AXTreeCombiner() = default;
void AXTreeCombiner::AddTree(AXTreeUpdate& tree, bool is_root) {
if (tree.tree_data.tree_id == AXTreeIDUnknown()) {
LOG(WARNING) << "Skipping AXTreeID because its tree ID is unknown";
return;
}
if (is_root) {
DCHECK_EQ(root_tree_id_, AXTreeIDUnknown());
root_tree_id_ = tree.tree_data.tree_id;
}
trees_.emplace_back(std::move(tree));
}
bool AXTreeCombiner::Combine() {
// `Combine` should only ever be called once.
CHECK(!combined_.has_value());
if (trees_.size() == 1) {
// Nothing to combine -- only one tree.
DCHECK(root_tree_id_ == trees_[0].tree_data.tree_id);
combined_ = std::move(trees_[0]);
return true;
}
combined_ = AXTreeUpdate();
// First create a map from tree ID to tree update.
std::map<AXTreeID, AXTreeUpdate*> tree_id_map;
for (auto& tree : trees_) {
AXTreeID tree_id = tree.tree_data.tree_id;
if (tree_id_map.find(tree_id) != tree_id_map.end()) {
return false;
}
tree_id_map[tree.tree_data.tree_id] = &tree;
}
// Make sure the root tree ID is in the map, otherwise fail.
if (tree_id_map.find(root_tree_id_) == tree_id_map.end()) {
return false;
}
// Process the nodes recursively, starting with the root tree.
AXTreeUpdate* root = tree_id_map.find(root_tree_id_)->second;
ProcessTree(root, tree_id_map);
// Set the root id.
combined_->root_id = combined_->nodes.size() > 0 ? combined_->nodes[0].id : 0;
// Finally, handle the tree ID, taking into account which subtree might
// have focus and mapping IDs from the tree data appropriately.
combined_->has_tree_data = true;
combined_->tree_data = root->tree_data;
AXTreeID focused_tree_id = root->tree_data.focused_tree_id;
const AXTreeUpdate* focused_tree = root;
if (tree_id_map.find(focused_tree_id) != tree_id_map.end()) {
focused_tree = tree_id_map[focused_tree_id];
}
combined_->tree_data.focus_id =
MapId(focused_tree_id, focused_tree->tree_data.focus_id);
combined_->tree_data.sel_is_backward =
MapId(focused_tree_id, focused_tree->tree_data.sel_is_backward);
combined_->tree_data.sel_anchor_object_id =
MapId(focused_tree_id, focused_tree->tree_data.sel_anchor_object_id);
combined_->tree_data.sel_focus_object_id =
MapId(focused_tree_id, focused_tree->tree_data.sel_focus_object_id);
combined_->tree_data.sel_anchor_offset =
focused_tree->tree_data.sel_anchor_offset;
combined_->tree_data.sel_focus_offset =
focused_tree->tree_data.sel_focus_offset;
// Debug-mode check that the resulting combined tree is valid.
AXTree tree;
DCHECK(tree.Unserialize(*combined_)) << combined_->ToString() << "\n"
<< tree.error();
return true;
}
AXNodeID AXTreeCombiner::MapId(AXTreeID tree_id, AXNodeID node_id) {
auto tree_id_node_id = std::make_pair(tree_id, node_id);
if (tree_id_node_id_map_[tree_id_node_id] == 0)
tree_id_node_id_map_[tree_id_node_id] = next_id_++;
return tree_id_node_id_map_[tree_id_node_id];
}
void AXTreeCombiner::ProcessTree(
AXTreeUpdate* tree,
const std::map<AXTreeID, AXTreeUpdate*>& tree_id_map) {
AXTreeID tree_id = tree->tree_data.tree_id;
for (auto& node : tree->nodes) {
AXTreeID child_tree_id = AXTreeID::FromString(
node.GetStringAttribute(ax::mojom::StringAttribute::kChildTreeId));
// Map the node's ID.
node.id = MapId(tree_id, node.id);
// Map the node's child IDs.
for (int& child_id : node.child_ids) {
child_id = MapId(tree_id, child_id);
}
// Map the container id.
if (node.relative_bounds.offset_container_id > 0) {
node.relative_bounds.offset_container_id =
MapId(tree_id, node.relative_bounds.offset_container_id);
}
// Map other int attributes that refer to node IDs.
for (auto& attr : node.int_attributes) {
if (IsNodeIdIntAttribute(attr.first)) {
attr.second = MapId(tree_id, attr.second);
}
}
// Map other int list attributes that refer to node IDs.
for (auto& node_int_list : node.intlist_attributes) {
if (IsNodeIdIntListAttribute(node_int_list.first)) {
for (int& attr : node_int_list.second) {
attr = MapId(tree_id, attr);
}
}
}
// Remove the ax::mojom::StringAttribute::kChildTreeId attribute.
for (auto& attr : node.string_attributes) {
if (attr.first == ax::mojom::StringAttribute::kChildTreeId) {
attr.first = ax::mojom::StringAttribute::kNone;
attr.second = "";
}
}
// See if this node has a child tree. As a confidence check, make sure the
// child tree lists this tree as its parent tree id.
AXTreeUpdate* child_tree = nullptr;
if (tree_id_map.find(child_tree_id) != tree_id_map.end()) {
child_tree = tree_id_map.find(child_tree_id)->second;
if (child_tree->tree_data.parent_tree_id != tree_id) {
child_tree = nullptr;
}
if (child_tree && child_tree->nodes.empty()) {
child_tree = nullptr;
}
if (child_tree) {
node.child_ids.push_back(MapId(child_tree_id, child_tree->nodes[0].id));
}
}
// Put the rewritten AXNodeData into the output data structure.
combined_->nodes.emplace_back(std::move(node));
// Recurse into the child tree now, if any.
if (child_tree) {
ProcessTree(child_tree, tree_id_map);
}
}
}
} // namespace ui
|