1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
#define UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
#include <stddef.h>
#include <stdint.h>
#include <ctime>
#include <map>
#include <memory>
#include <ostream>
#include <set>
#include <vector>
#include "base/debug/crash_logging.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/notreached.h"
#include "base/time/time.h"
#include "base/timer/elapsed_timer.h"
#include "ui/accessibility/ax_common.h"
#include "ui/accessibility/ax_error_types.h"
#include "ui/accessibility/ax_export.h"
#include "ui/accessibility/ax_tree_data.h"
#include "ui/accessibility/ax_tree_source.h"
#include "ui/accessibility/ax_tree_update.h"
namespace ui {
struct ClientTreeNode;
// AXTreeSerializer is a helper class that serializes incremental
// updates to an AXTreeSource as a AXTreeUpdateType struct.
// These structs can be unserialized by a client object such as an
// AXTree. An AXTreeSerializer keeps track of the tree of node ids that its
// client is aware of so that it will never generate an AXTreeUpdateType that
// results in an invalid tree.
//
// Every node in the source tree must have an id that's a unique positive
// integer, the same node must not appear twice.
//
// Usage:
//
// You must call SerializeChanges() every time a node in the tree changes,
// and send the generated AXTreeUpdateType to the client. Changes to the
// AXTreeData, if any, are also automatically included in the AXTreeUpdateType.
//
// If a node is added, call SerializeChanges on its parent.
// If a node is removed, call SerializeChanges on its parent.
// If a whole new subtree is added, just call SerializeChanges on its root.
// If the root of the tree changes, call SerializeChanges on the new root.
//
// AXTreeSerializer will avoid re-serializing nodes that do not change.
// For example, if node 1 has children 2, 3, 4, 5 and then child 2 is
// removed and a new child 6 is added, the AXTreeSerializer will only
// update nodes 1 and 6 (and any children of node 6 recursively). It will
// assume that nodes 3, 4, and 5 are not modified unless you explicitly
// call SerializeChanges() on them.
//
// As long as the source tree has unique ids for every node and no loops,
// and as long as every update is applied to the client tree, AXTreeSerializer
// will continue to work. If the source tree makes a change but fails to
// call SerializeChanges properly, the trees may get out of sync - but
// because AXTreeSerializer always keeps track of what updates it's sent,
// it will never send an invalid update and the client tree will not break,
// it just may not contain all of the changes.
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
class AXTreeSerializer {
public:
explicit AXTreeSerializer(
AXTreeSource<AXSourceNode, AXTreeDataType, AXNodeDataType>* tree,
bool crash_on_error = true);
~AXTreeSerializer();
// Throw out the internal state that keeps track of the nodes the client
// knows about. This has the effect that the next update will send the
// entire tree over because it assumes the client knows nothing.
void Reset();
// Sets the maximum number of nodes that will be serialized, or zero
// for no maximum. This is not a hard maximum - once it hits or
// exceeds this maximum it stops walking the children of nodes, but
// it may exceed this value a bit in order to create a consistent
// tree.
void set_max_node_count(size_t max_node_count) {
max_node_count_ = max_node_count;
}
// Sets the maximum amount of time to be spend serializing, or zero for
// no maximum. This is not a hard maximum - once it hits or
// exceeds this timeout it stops walking the children of nodes, but
// it may exceed this value a bit in order to create a consistent
// tree. This is only intended to be used for one-time tree snapshots.
void set_timeout(base::TimeDelta timeout) { timeout_ = timeout; }
// Serialize all changes to |node| and append them to |out_update|.
// Returns true on success. On failure, returns false and calls Reset();
// this only happens when the source tree has a problem like duplicate
// ids or changing during serialization.
bool SerializeChanges(
AXSourceNode node,
AXTreeUpdateType out_update,
std::set<AXSerializationErrorFlag>* out_error = nullptr);
// Invalidate the subtree rooted at this node, ensuring that the entire
// subtree is re-serialized the next time any of those nodes end up
// being serialized.
void MarkSubtreeDirty(AXNodeID id);
// Invalidate a single node, ensuring that it is reserialized.
void MarkNodeDirty(AXNodeID id);
// Return whether or not this node is in the client tree. If you call
// this immediately after serializing, this indicates whether a given
// node is in the set of nodes that the client (the recipient of
// the AXTreeUpdates) is aware of.
//
// For example, you could use this to determine if a given node is
// reachable. If one of its ancestors is hidden and it was pruned
// from the accessibility tree, this would return false.
bool IsInClientTree(AXSourceNode node);
// Only for unit testing. Normally this class relies on getting a call
// to SerializeChanges() every time the source tree changes. For unit
// testing, it's convenient to create a static AXTree for the initial
// state and then call ChangeTreeSourceForTesting and then SerializeChanges
// to simulate the changes you'd get if a tree changed from the initial
// state to the second tree's state.
void ChangeTreeSourceForTesting(
AXTreeSource<AXSourceNode, AXTreeDataType, AXNodeDataType>* new_tree);
// Returns the number of nodes in the client tree. After a serialization
// operation this should be an accurate representation of the tree source
// as explored by the serializer.
size_t ClientTreeNodeCount() const;
#if AX_FAIL_FAST_BUILD()
std::vector<AXNodeID> ClientTreeNodeIds() const;
AXSourceNode ParentOf(AXNodeID id);
#endif
private:
// Return the least common ancestor of a node in the source tree
// and a node in the client tree, or nullptr if there is no such node.
// The least common ancestor is the closest ancestor to |node| (which
// may be |node| itself) that's in both the source tree and client tree,
// and for which both the source and client tree agree on their ancestor
// chain up to the root.
//
// Example 1:
//
// Client Tree Source tree |
// 1 1 |
// / \ / \ |
// 2 3 2 4 |
//
// LCA(source node 2, client node 2) is node 2.
// LCA(source node 3, client node 4) is node 1.
//
// Example 2:
//
// Client Tree Source tree |
// 1 1 |
// / \ / \ |
// 2 3 2 3 |
// / \ / / |
// 4 7 8 4 |
// / \ / \ |
// 5 6 5 6 |
//
// LCA(source node 8, client node 7) is node 2.
// LCA(source node 5, client node 5) is node 1.
// It's not node 5, because the two trees disagree on the parent of
// node 4, so the LCA is the first ancestor both trees agree on.
AXSourceNode LeastCommonAncestor(AXSourceNode node,
ClientTreeNode* client_node);
// Return the least common ancestor of |node| that's in the client tree.
// This just walks up the ancestors of |node| until it finds a node that's
// also in the client tree and not inside a dirty subtree, and then calls
// LeastCommonAncestor on the source node and client node.
AXSourceNode LeastCommonAncestor(AXSourceNode node);
// Look for reparenting in the subtree, and, if found, update the LCA with
// both the old and new parent, and clear its subtree.
// Return true if there was reparenting.
bool ComputeReparentingLCA(AXSourceNode* lca);
// Walk the subtree rooted at |node| and return true if any nodes that
// would be updated are being reparented. If so, update |out_lca| to point
// to the least common ancestor of the previous LCA and the previous
// parent of the node being reparented.
bool AnyDescendantWasReparented(AXSourceNode node,
AXSourceNode* out_lca);
ClientTreeNode* ClientTreeNodeById(AXNodeID id);
void CreateClientRoot(AXSourceNode root);
// Mark as dirty the subtree rooted at this node.
void MarkClientSubtreeDirty(ClientTreeNode* client_node);
// Delete all descendants of this node.
void DeleteDescendants(ClientTreeNode* client_node);
void DeleteDescendants(AXSourceNode node);
// Delete the client subtree rooted at this node.
void DeleteClientSubtree(ClientTreeNode* client_node);
// Helper function, called recursively with each new node to serialize.
bool SerializeChangedNodes(
AXSourceNode node,
AXTreeUpdateType out_update,
std::set<AXSerializationErrorFlag>* out_error = nullptr);
ClientTreeNode* GetClientTreeNodeParent(ClientTreeNode* obj);
// The tree source.
raw_ptr<AXTreeSource<AXSourceNode, AXTreeDataType, AXNodeDataType>,
DanglingUntriaged>
tree_;
// The tree data most recently sent to the client.
AXTreeData client_tree_data_;
// Our representation of the client tree.
raw_ptr<ClientTreeNode, DanglingUntriaged> client_root_ = nullptr;
// A map from IDs to nodes in the client tree.
std::map<AXNodeID, ClientTreeNode*> client_id_map_;
// The maximum number of nodes to serialize in a given call to
// SerializeChanges, or 0 if there's no maximum.
size_t max_node_count_ = 0;
// The maximum time to spend serializing before timing out, or 0
// if there's no maximum.
base::TimeDelta timeout_;
// The timer, which runs if there's a nonzero timeout and it hasn't
// yet expired. Once the timeout elapses, the timer is deleted.
std::unique_ptr<base::ElapsedTimer> timer_;
// If Reset() Is called, stores the previous root of the entire tree. The
// next serialization will set node_id_to_clear to this value ensure that the
// previously serialized tree is also completely cleared on the
// deserialization side. The id of tree_->GetRoot() cannot be changed because
// the root may have changed since the previous serialization.
AXNodeID client_root_id_to_clear_after_reset_ = kInvalidAXNodeID;
// Whether to crash the process on serialization error or not.
const bool crash_on_error_;
};
// In order to keep track of what nodes the client knows about, we keep a
// representation of the client tree - just IDs and parent/child
// relationships, and a marker indicating whether it's been dirtied.
struct AX_EXPORT ClientTreeNode final {
ClientTreeNode(AXNodeID id, ClientTreeNode* parent);
~ClientTreeNode();
bool IsDirty() { return in_dirty_subtree || is_dirty; }
const AXNodeID id;
const raw_ptr<ClientTreeNode, DanglingUntriaged> parent;
// Not a vector<raw_ptr> due to regressions in blink_perf.accessibility tests.
RAW_PTR_EXCLUSION std::vector<ClientTreeNode*> children;
bool ignored : 1;
// Additional nodes that must be serialized. When a dirty subtree is reached,
// the entire subtree will be added to the current serialization.
// For this to occur, the root of the dirty subtree must be reached in
// SerializedChanges(), which occurs when one of its nodes or an ancestor is
// passed in.
// TODO(accessibility) It is an error if there any dirty nodes remaining
// after serialization is complete, and this could be turned into a CHECK.
bool in_dirty_subtree : 1;
// An individual node that is dirty, but its subtree may not be.
bool is_dirty : 1;
};
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::
AXTreeSerializer(
AXTreeSource<AXSourceNode, AXTreeDataType, AXNodeDataType>* tree,
bool crash_on_error)
: tree_(tree), crash_on_error_(crash_on_error) {}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::~AXTreeSerializer() {
// Clear |tree_| to prevent any additional calls to the tree source
// during teardown.
// TODO(accessibility) How would that happen?
tree_ = nullptr;
// Free up any resources allocated on the heap that are stored with raw_ptr.
Reset();
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::Reset() {
if (client_root_) {
// This id must be set from the client tree root, and not from the tree
// source root, so that if the root changes the correct subtree is still
// cleared.
client_root_id_to_clear_after_reset_ = client_root_->id;
}
client_tree_data_ = AXTreeData();
// Normally we use DeleteClientSubtree to remove nodes from the tree,
// but Reset() needs to work even if the tree is in a broken state.
// Instead, iterate over |client_id_map_| to ensure we clear all nodes and
// start from scratch.
for (auto&& item : client_id_map_)
delete item.second;
client_id_map_.clear();
client_root_ = nullptr;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::
ChangeTreeSourceForTesting(
AXTreeSource<AXSourceNode, AXTreeDataType, AXNodeDataType>* new_tree) {
tree_ = new_tree;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
size_t AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::ClientTreeNodeCount() const {
return client_id_map_.size();
}
#if AX_FAIL_FAST_BUILD()
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
std::vector<AXNodeID> AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::ClientTreeNodeIds()
const {
std::vector<AXNodeID> keys;
std::transform(
client_id_map_.begin(), client_id_map_.end(), std::back_inserter(keys),
[](std::pair<AXNodeID, ClientTreeNode*> item) { return item.first; });
return keys;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
AXSourceNode AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::ParentOf(AXNodeID id) {
ClientTreeNode* node = ClientTreeNodeById(id);
if (!node || !node->parent) {
return nullptr;
}
return tree_->GetFromId(node->parent->id);
}
#endif // AX_FAIL_FAST_BUILD()
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
AXSourceNode AXTreeSerializer<
AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::LeastCommonAncestor(AXSourceNode node,
ClientTreeNode* client_node) {
if (!node || client_node == nullptr) {
return tree_->GetNull();
}
AXSourceNodeVectorType ancestors;
while (node) {
ancestors.push_back(node);
node = tree_->GetParent(node);
}
std::vector<ClientTreeNode*> client_ancestors;
while (client_node) {
client_ancestors.push_back(client_node);
client_node = GetClientTreeNodeParent(client_node);
}
// Start at the root. Keep going until the source ancestor chain and
// client ancestor chain disagree. The last node before they disagree
// is the LCA.
AXSourceNode lca = tree_->GetNull();
for (size_t source_index = ancestors.size(),
client_index = client_ancestors.size();
source_index > 0 && client_index > 0; --source_index, --client_index) {
if (tree_->GetId(ancestors[(unsigned int)(source_index - 1)]) !=
client_ancestors[client_index - 1]->id) {
// The passed-in |node| must be serialized. To ensure this, mark the
// downward path from the new LCA to |node| as dirty. Use the source tree
// as opposed to the client tree, because the serializer traverses that.
for (unsigned int dirty_index = 0; dirty_index < source_index;
++dirty_index) {
AXNodeID source_id = tree_->GetId(ancestors[dirty_index]);
if (ClientTreeNode* node_mark_dirty = ClientTreeNodeById(source_id)) {
node_mark_dirty->is_dirty = true;
}
}
return lca;
}
lca = ancestors[(unsigned int)(source_index - 1)];
}
return lca;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
AXSourceNode
AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::LeastCommonAncestor(AXSourceNode node) {
// Walk up the tree until the source node's id also exists in the
// client tree, whose parent is not dirty, then call LeastCommonAncestor
// on those two nodes.
//
// Note that it's okay if |client_node| is dirty - the LCA can be the
// root of a dirty subtree, since we're going to serialize the
// LCA. But it's not okay if |client_node->parent| is dirty - that means
// that we're inside of a dirty subtree that all needs to be re-serialized, so
// the LCA should be higher.
ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node));
while (node) {
if (client_node) {
ClientTreeNode* parent = GetClientTreeNodeParent(client_node);
if (!parent || !parent->in_dirty_subtree) {
break;
}
}
node = tree_->GetParent(node);
if (node) {
client_node = ClientTreeNodeById(tree_->GetId(node));
}
}
return LeastCommonAncestor(node, client_node);
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
bool AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::ComputeReparentingLCA(AXSourceNode*
lca) {
// Look for reparenting under the lca subtree, and, if found, update lca using
// both the old and new parent, and clear its subtree.
// Returns true if there was reparenting, as an indication to clear the tree
// rooted at the lca on deserialization.
CHECK(lca);
bool had_reparenting = false;
while (*lca && AnyDescendantWasReparented(*lca, /*out_lca*/ lca)) {
// LCA has been moved up in the tree to the common ancestor with a
// reparented descendant.
DeleteDescendants(*lca);
had_reparenting = true;
}
if (*lca) {
return had_reparenting;
}
// There was no LCA: clear everything and treat it as if the LCA was the root
// of the tree so that everything is cleared on the receiving end.
Reset();
return true;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
bool AXTreeSerializer<
AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::AnyDescendantWasReparented(AXSourceNode node,
AXSourceNode* out_lca) {
bool result = false;
int id = tree_->GetId(node);
tree_->CacheChildrenIfNeeded(node);
auto num_children = tree_->GetChildCount(node);
for (size_t i = 0; i < num_children; ++i) {
AXSourceNode child = tree_->ChildAt(node, i);
CHECK(child);
int child_id = tree_->GetId(child);
ClientTreeNode* client_child = ClientTreeNodeById(child_id);
if (client_child) {
ClientTreeNode* parent = client_child->parent;
if (!parent) {
// If the client child has no parent, it must have been the
// previous root node, so there is no LCA and we can exit early.
*out_lca = tree_->GetNull();
tree_->ClearChildCache(node);
return true;
} else if (parent->id != id) {
// If the client child's parent is not this node, update the LCA
// and return true (reparenting was found).
*out_lca = LeastCommonAncestor(*out_lca, client_child);
result = true;
continue;
} else if (!client_child->IsDirty()) {
// This child is already in the client tree and not dirty, we won't
// recursively serialize it so we don't need to check this
// subtree recursively for reparenting.
// However, if the child is or was ignored, the children may now be
// considered as reparented, so continue recursion in that case.
if (!client_child->ignored && !tree_->IsIgnored(child))
continue;
}
}
// This is a new child or reparented child, check it recursively.
if (AnyDescendantWasReparented(child, out_lca))
result = true;
}
tree_->ClearChildCache(node);
return result;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::CreateClientRoot(AXSourceNode root) {
// A new client root must be created for the first serialization after
// construction or a Reset(), otherwise serialization cannot succeed.
client_root_ = new ClientTreeNode(tree_->GetId(root), nullptr);
client_id_map_[client_root_->id] = client_root_;
CHECK(!tree_->GetParent(root))
<< "A root should never have a parent, but "
"the tree source thinks there is one:"
<< "\n* Root: " << tree_->GetDebugString(root) << "\n* Parent of root: "
<< tree_->GetDebugString(tree_->GetParent(root));
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
ClientTreeNode*
AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::ClientTreeNodeById(AXNodeID id) {
std::map<AXNodeID, ClientTreeNode*>::iterator iter = client_id_map_.find(id);
if (iter != client_id_map_.end())
return iter->second;
return nullptr;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
ClientTreeNode*
AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::GetClientTreeNodeParent(ClientTreeNode* obj) {
ClientTreeNode* parent = obj->parent;
if (!parent)
return nullptr;
if (!ClientTreeNodeById(parent->id)) {
std::ostringstream error;
error << "Child: " << tree_->GetDebugString(tree_->EnsureGetFromId(obj->id))
<< "\nParent: "
<< tree_->GetDebugString(tree_->EnsureGetFromId(parent->id));
static auto* missing_parent_err = base::debug::AllocateCrashKeyString(
"ax_ts_missing_parent_err", base::debug::CrashKeySize::Size256);
base::debug::SetCrashKeyString(missing_parent_err,
error.str().substr(0, 230));
if (crash_on_error_) {
NOTREACHED() << error.str();
} else {
LOG(ERROR) << error.str();
// Different from other errors, not calling Reset() here to avoid breaking
// the internal state of this class.
}
}
return parent;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
bool AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::
SerializeChanges(AXSourceNode node,
AXTreeUpdateType out_update,
std::set<AXSerializationErrorFlag>* out_error) {
if (!timeout_.is_zero())
timer_ = std::make_unique<base::ElapsedTimer>();
CHECK(tree_->GetId(node) != kInvalidAXNodeID);
// If the root changed: reset the tree, clear the root, and start over.
if (client_root_ && client_root_->id != tree_->GetId(tree_->GetRoot())) {
Reset();
}
// If we had a reset, ensure that the old tree is cleared before the client
// unserializes this update. If we didn't do this, there's a chance that
// treating this update as an incremental update could result in some
// reparenting.
if (client_root_id_to_clear_after_reset_ != kInvalidAXNodeID) {
out_update->node_id_to_clear = client_root_id_to_clear_after_reset_;
client_root_id_to_clear_after_reset_ = 0;
}
// The LCA will be the least common ancestor for the serialization and used
// as the root of the AXTreeUpdate.
AXSourceNode lca = nullptr;
// This computes the least common ancestor that includes the old
// and new parents of any nodes that have been reparented, and clears the
// whole client subtree of that LCA if necessary. If we do end up clearing
// any client nodes, keep looping because we have to search for more
// nodes that may have been reparented from this new LCA.
if (client_root_) {
// Not the first serialization: compute the LCA.
// Although LeastCommonAncestor() is passed a single node, it actually uses
// uses the node id to get an LCA from two sets of ancestors of the node:
// 1) ancestors the client tree, which contains the last serialized tree
// 2) ancestors in the source tree, which contains the current tree
// Because of this, if `node` has been moved, the LCA will be an ancestor
// of both its old and new positions in the tree.
// In addition, the LCA may be moved to a higher ancestor in order to
// prevent it from being on node with a dirty parent or parent that hasn't
// yet been serialized. This ensures that the serialization is not missing
// dirty or new nodes.
lca = LeastCommonAncestor(node);
// Look for reparenting in descendants of the subtree, and, if found, update
// the LCA with both the old and new parents of that descendant.
if (ComputeReparentingLCA(&lca)) {
// Reparenting was found in the subtree. Inform the deserializer
// to delete the subtree before receiving it, so that the final result
// does not contain two subtrees with the same node. The LCA now contains
// subtrees for both the old and new parent.
out_update->node_id_to_clear = tree_->GetId(lca);
}
} else {
// First serialization for this tree, after a changed root, or after a
// Reset():use the root for the LCA and create the client root.
lca = tree_->GetRoot();
CreateClientRoot(lca);
}
CHECK(tree_->GetId(lca) != kInvalidAXNodeID);
if (!SerializeChangedNodes(lca, out_update, out_error)) {
return false;
}
// Send the tree data if it's changed since the last update, or if
// out_update->has_tree_data is already set to true.
// Do this last, so that selection retrieval will cause recomputation of
// node inclusion before the the new tree structure has been updated in a
// top-down matter via SerializeChangedNodes().
AXTreeData new_tree_data;
if (tree_->GetTreeData(&new_tree_data) &&
(out_update->has_tree_data || new_tree_data != client_tree_data_)) {
out_update->has_tree_data = true;
out_update->tree_data = new_tree_data;
client_tree_data_ = std::move(new_tree_data);
}
return true;
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::MarkNodeDirty(AXNodeID id) {
if (ClientTreeNode* client_node = ClientTreeNodeById(id)) {
client_node->is_dirty = true;
}
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::MarkSubtreeDirty(AXNodeID id) {
if (ClientTreeNode* client_node = ClientTreeNodeById(id)) {
MarkClientSubtreeDirty(client_node);
}
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
bool AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::IsInClientTree(AXSourceNode node) {
return ClientTreeNodeById(tree_->GetId(node));
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::MarkClientSubtreeDirty(ClientTreeNode*
client_node) {
// Return early if already marked dirty, in order to avoid duplicate work in
// subtree, as the only method that marks nodes dirty is this one.
if (client_node->in_dirty_subtree) {
return;
}
client_node->in_dirty_subtree = true;
for (ClientTreeNode* child : client_node->children) {
MarkClientSubtreeDirty(child);
}
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::DeleteClientSubtree(ClientTreeNode*
client_node) {
if (client_node == client_root_) {
// Do not try to reuse a bad root later.
// A heuristic for this condition rather than an explicit Reset() from a
// caller makes it difficult to debug whether extra resets / lost virtual
// buffer positions are occurring because of this code. Therefore, a CHECK
// has been added in order to debug if or when this condition may occur.
CHECK(!crash_on_error_)
<< "Attempt to delete entire client subtree, including the root.";
} else {
DeleteDescendants(client_node);
client_id_map_.erase(client_node->id);
delete client_node;
}
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::DeleteDescendants(ClientTreeNode*
client_node) {
for (size_t i = 0; i < client_node->children.size(); ++i)
DeleteClientSubtree(client_node->children[i]);
client_node->children.clear();
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
void AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::DeleteDescendants(AXSourceNode node) {
ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node));
CHECK(client_node);
DeleteDescendants(client_node);
}
template <typename AXSourceNode,
typename AXSourceNodeVectorType,
typename AXTreeUpdateType,
typename AXTreeDataType,
typename AXNodeDataType>
bool AXTreeSerializer<AXSourceNode,
AXSourceNodeVectorType,
AXTreeUpdateType,
AXTreeDataType,
AXNodeDataType>::
SerializeChangedNodes(AXSourceNode node,
AXTreeUpdateType out_update,
std::set<AXSerializationErrorFlag>* out_error) {
// This method has three responsibilities:
// 1. Serialize |node| into an AXNodeData, and append it to
// the AXTreeUpdateType to be sent to the client.
// 2. Determine if |node| has any new children that the client doesn't
// know about yet, and call SerializeChangedNodes recursively on those.
// 3. Update our internal data structure that keeps track of what nodes
// the client knows about.
// First, find the ClientTreeNode for this id in our data structure where
// we keep track of what accessibility objects the client already knows
// about.
// If we don't find it, then the intention may be to use it as the
// new root of the accessibility tree. A heuristic for this condition rather
// than an explicit Reset() from a caller makes it difficult to debug whether
// extra resets / lost virtual buffer positions are occurring because of this
// code. Therefore, a CHECK has been added in order to debug if or when this
// condition may occur.
int id = tree_->GetId(node);
ClientTreeNode* client_node = ClientTreeNodeById(id);
CHECK(client_node);
// We're about to serialize it, so clear its dirty states.
client_node->in_dirty_subtree = false;
client_node->is_dirty = false;
client_node->ignored = tree_->IsIgnored(node);
// Terminate early if a maximum number of nodes is reached.
// the output tree is still consistent).
bool should_terminate_early = false;
if (max_node_count_ > 0 && out_update->nodes.size() >= max_node_count_) {
should_terminate_early = true;
if (out_error) {
(*out_error).insert(AXSerializationErrorFlag::kMaxNodesReached);
}
}
// Also terminate early if a timeout is reached.
if (!timeout_.is_zero()) {
if (timer_ && timer_->Elapsed() >= timeout_) {
// Terminate early and delete the timer so that we don't have to
// keep checking if we timed out.
should_terminate_early = true;
if (out_error) {
(*out_error).insert(AXSerializationErrorFlag::kTimeoutReached);
}
timer_.reset();
} else if (!timer_) {
// Already timed out; keep terminating early until the serialization
// is done.
should_terminate_early = true;
}
}
// Iterate over the ids of the children of |node|.
// Create a set of the child ids so we can quickly look
// up which children are new and which ones were there before.
// If we've hit the maximum number of serialized nodes, pretend
// this node has no children but keep going so that we get
// consistent results.
std::set<AXNodeID> new_ignored_ids;
std::set<AXNodeID> new_child_ids;
size_t num_children = 0;
if (!should_terminate_early) {
tree_->CacheChildrenIfNeeded(node);
num_children = tree_->GetChildCount(node);
}
for (size_t i = 0; i < num_children; ++i) {
AXSourceNode child = tree_->ChildAt(node, i);
CHECK(child);
int new_child_id = tree_->GetId(child);
new_child_ids.insert(new_child_id);
if (tree_->IsIgnored(child))
new_ignored_ids.insert(new_child_id);
// There shouldn't be any reparenting because we've already handled it
// above. If this happens, reset and return an error.
ClientTreeNode* client_child = ClientTreeNodeById(new_child_id);
if (client_child && GetClientTreeNodeParent(client_child) != client_node) {
// This condition leads to performance problems. It will
// also reset virtual buffers, causing users to lose their place.
std::ostringstream error;
error << "Passed-in parent: "
<< tree_->GetDebugString(tree_->EnsureGetFromId(client_node->id))
<< "\nChild: " << tree_->GetDebugString(child)
<< "\nChild's parent: "
<< tree_->GetDebugString(
tree_->EnsureGetFromId(client_child->parent->id));
static auto* reparent_err = base::debug::AllocateCrashKeyString(
"ax_ts_reparent_err", base::debug::CrashKeySize::Size256);
base::debug::SetCrashKeyString(reparent_err, error.str().substr(0, 230));
if (crash_on_error_) {
NOTREACHED() << error.str();
} else {
LOG(ERROR) << error.str();
Reset();
}
tree_->ClearChildCache(node);
return false;
}
}
// Go through the old children and delete subtrees for child
// ids that are no longer present, and create a map from
// id to ClientTreeNode for the rest. It's important to delete
// first in a separate pass so that nodes that are reparented
// don't end up children of two different parents in the middle
// of an update, which can lead to a double-free.
std::map<AXNodeID, ClientTreeNode*> client_child_id_map;
std::vector<ClientTreeNode*> old_children;
old_children.swap(client_node->children);
for (size_t i = 0; i < old_children.size(); ++i) {
ClientTreeNode* old_child = old_children[i];
int old_child_id = old_child->id;
if (new_child_ids.find(old_child_id) == new_child_ids.end()) {
DeleteClientSubtree(old_child);
} else {
client_child_id_map[old_child_id] = old_child;
}
}
// Serialize this node. This fills in all of the fields in
// AXNodeData except child_ids, which we handle below.
const size_t serialized_node_index = out_update->nodes.size();
out_update->nodes.emplace_back();
{
// Take the address of an element in a vector only within a limited
// scope because otherwise the pointer can become invalid if the
// vector is resized.
AXNodeData* serialized_node = &out_update->nodes.back();
tree_->SerializeNode(node, serialized_node);
if (serialized_node->id == client_root_->id) {
out_update->root_id = serialized_node->id;
CHECK(!client_root_->parent) << "The root cannot have a parent:";
// << "\n* Root: "
// << tree_->GetDebugString(tree_->GetFromId(out_update->root_id))
// << "\n* Root's parent: "
// << tree_->GetDebugString(tree_->GetFromId(client_root_->parent->id));
} else {
CHECK(serialized_node->role != ax::mojom::Role::kRootWebArea)
<< "A kRootWebArea role was used on an object that is not the root: "
<< "\n* Actual root: " << tree_->GetDebugString(tree_->GetRoot())
<< "\n* Illegal node with root web area role: "
<< tree_->GetDebugString(tree_->EnsureGetFromId(serialized_node->id))
<< "\n* Parent of illegal node: "
<< (client_node->parent
? tree_->GetDebugString(
tree_->EnsureGetFromId(client_node->parent->id))
: "");
}
}
// Iterate over the children, serialize them, and update the ClientTreeNode
// data structure to reflect the new tree.
std::vector<AXNodeID> actual_serialized_node_child_ids;
client_node->children.reserve(num_children);
for (size_t i = 0; i < num_children; ++i) {
AXSourceNode child = tree_->ChildAt(node, i);
CHECK(child);
int child_id = tree_->GetId(child);
// Skip if the same child is included more than once.
if (new_child_ids.find(child_id) == new_child_ids.end())
continue;
new_child_ids.erase(child_id);
actual_serialized_node_child_ids.push_back(child_id);
ClientTreeNode* reused_child = nullptr;
if (client_child_id_map.find(child_id) != client_child_id_map.end())
reused_child = ClientTreeNodeById(child_id);
if (reused_child) {
client_node->children.push_back(reused_child);
const bool ignored_state_changed =
reused_child->ignored !=
(new_ignored_ids.find(reused_child->id) != new_ignored_ids.end());
// Re-serialize it if the child is marked as dirty, otherwise
// we don't have to because the client already has it.
if (reused_child->IsDirty() || ignored_state_changed) {
if (!SerializeChangedNodes(child, out_update, out_error)) {
tree_->ClearChildCache(node);
return false;
}
}
} else {
ClientTreeNode* new_child = new ClientTreeNode(child_id, client_node);
new_child->ignored = tree_->IsIgnored(child);
new_child->in_dirty_subtree = false;
new_child->is_dirty = false;
client_node->children.push_back(new_child);
if (ClientTreeNodeById(child_id)) {
// TODO(accessibility) Remove all cases where this occurs and re-add
// This condition leads to performance problems. It will
// also reset virtual buffers, causing users to lose their place.
std::ostringstream error;
error << "Child id " << child_id << " already in map."
<< "\nChild: "
<< tree_->GetDebugString(tree_->EnsureGetFromId(child_id))
<< "\nWanted for parent " << tree_->GetDebugString(node)
<< "\nAlready had parent "
<< tree_->GetDebugString(tree_->EnsureGetFromId(
ClientTreeNodeById(child_id)->parent->id));
static auto* dupe_id_err = base::debug::AllocateCrashKeyString(
"ax_ts_dupe_id_err", base::debug::CrashKeySize::Size256);
base::debug::SetCrashKeyString(dupe_id_err, error.str().substr(0, 230));
if (crash_on_error_) {
NOTREACHED() << error.str();
} else {
LOG(ERROR) << error.str();
Reset();
}
tree_->ClearChildCache(node);
return false;
}
client_id_map_[child_id] = new_child;
if (!SerializeChangedNodes(child, out_update, out_error)) {
tree_->ClearChildCache(node);
return false;
}
}
}
tree_->ClearChildCache(node);
// Finally, update the child ids of this node to reflect the actual child
// ids that were valid during serialization.
out_update->nodes[serialized_node_index].child_ids.swap(
actual_serialized_node_child_ids);
return true;
}
} // namespace ui
#endif // UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
|