1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/base/models/list_selection_model.h"
#include <algorithm>
#include <optional>
#include <valarray>
#include "base/check_op.h"
#include "base/containers/contains.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
namespace ui {
namespace {
// Determines the new index for `original_index` after inserting an item at
// `insert_position`. This is called for the selected indices.
size_t GetIndexAfterInsertion(size_t insert_position, size_t original_index) {
return (original_index >= insert_position) ? original_index + 1
: original_index;
}
// Determines the new index for `original_index` after inserting an item at
// `insert_position`. This is called for the active and anchor indexes.
std::optional<size_t> GetIndexAfterInsertion(
size_t insert_position,
std::optional<size_t> original_index) {
return original_index.has_value()
? std::optional<size_t>(GetIndexAfterInsertion(
insert_position, original_index.value()))
: std::nullopt;
}
// Determines the new index for `original_index` after removing an item at
// `remove_position`. This is called for the selected indices. Returns
// std::nullopt if `original_index` should be erased from its container.
std::optional<size_t> GetIndexAfterRemoval(size_t remove_position,
size_t original_index) {
if (original_index == remove_position) {
return std::nullopt;
}
if (original_index > remove_position) {
return original_index - 1;
}
return original_index;
}
// Determines the new index for `original_index` after removing an item at
// `remove_position`. This is called for active and anchor indexes. Returns
// std::nullopt if `original_index` should be erased from its container.
std::optional<size_t> GetIndexAfterRemoval(
size_t remove_position,
std::optional<size_t> original_index) {
return original_index.has_value()
? std::optional<size_t>(GetIndexAfterRemoval(
remove_position, original_index.value()))
: std::nullopt;
}
// Returns the new index for `original_index` when a range of items are moved
// from `source_position` to `destination_position`. This assumes that the items
// are moved to a lower index. This is called for active and anchor indexes.
std::optional<size_t> GetIndexAfterMove(size_t source_position,
size_t destination_position,
size_t range_size,
std::optional<size_t> original_index) {
DCHECK_LE(destination_position, source_position);
if (!original_index.has_value()) {
return std::nullopt;
}
// When a range of items moves to a lower index, the only affected indices
// are those in the interval [destination_position, source_position +
// range_size).
size_t original_index_val = original_index.value();
if (destination_position <= original_index_val &&
original_index_val < source_position + range_size) {
if (original_index_val < source_position) {
// The items originally in the interval [destination_position,
// source_position) see `range_size` many items inserted before them, so
// their indices increase.
return original_index_val + range_size;
} else {
// The items originally in the interval [source_position, source_position
// + range_size) are shifted downward by (source_position -
// destination_position) many spots, so their indices decrease.
return original_index_val - (source_position - destination_position);
}
}
return original_index;
}
} // namespace
ListSelectionModel::ListSelectionModel() = default;
ListSelectionModel::ListSelectionModel(const ListSelectionModel&) = default;
ListSelectionModel::ListSelectionModel(ListSelectionModel&&) noexcept = default;
ListSelectionModel::~ListSelectionModel() = default;
ListSelectionModel& ListSelectionModel::operator=(const ListSelectionModel&) =
default;
ListSelectionModel& ListSelectionModel::operator=(ListSelectionModel&&) =
default;
void ListSelectionModel::IncrementFrom(size_t index) {
// Shift the selection to account for a newly inserted item at |index|.
for (size_t& selected_index : selected_indices_) {
selected_index = GetIndexAfterInsertion(index, selected_index);
}
anchor_ = GetIndexAfterInsertion(index, anchor_);
set_active(GetIndexAfterInsertion(index, active_));
}
void ListSelectionModel::DecrementFrom(size_t index) {
for (auto it = selected_indices_.begin(); it != selected_indices_.end();) {
std::optional<size_t> new_value = GetIndexAfterRemoval(index, *it);
if (new_value == std::nullopt) {
it = selected_indices_.erase(it);
} else {
*it = new_value.value();
++it;
}
}
anchor_ = GetIndexAfterRemoval(index, anchor_);
set_active(GetIndexAfterRemoval(index, active_));
}
void ListSelectionModel::SetSelectedIndex(std::optional<size_t> index) {
anchor_ = index;
set_active(index);
selected_indices_.clear();
if (index.has_value()) {
selected_indices_.insert(index.value());
}
}
bool ListSelectionModel::IsSelected(size_t index) const {
return base::Contains(selected_indices_, index);
}
void ListSelectionModel::AddIndexToSelection(size_t index) {
selected_indices_.insert(index);
}
void ListSelectionModel::AddIndexRangeToSelection(size_t index_start,
size_t index_end) {
DCHECK_LE(index_start, index_end);
if (index_start == index_end)
return AddIndexToSelection(index_start);
for (size_t i = index_start; i <= index_end; ++i) {
selected_indices_.insert(i);
}
}
void ListSelectionModel::RemoveIndexFromSelection(size_t index) {
selected_indices_.erase(index);
}
void ListSelectionModel::SetSelectionFromAnchorTo(size_t index) {
if (!anchor_.has_value()) {
SetSelectedIndex(index);
} else {
SelectedIndices new_selection;
for (size_t min = std::min(index, anchor_.value()),
delta = std::max(index, anchor_.value()) - min, i = min;
i <= min + delta; ++i) {
new_selection.insert(i);
}
selected_indices_.swap(new_selection);
set_active(index);
}
}
void ListSelectionModel::AddSelectionFromAnchorTo(size_t index) {
if (!anchor_.has_value()) {
SetSelectedIndex(index);
} else {
for (size_t i = std::min(index, anchor_.value()),
end = std::max(index, anchor_.value());
i <= end; ++i) {
selected_indices_.insert(i);
}
set_active(index);
}
}
void ListSelectionModel::Move(size_t old_index,
size_t new_index,
size_t length) {
// |length| many items are moving from index |old_index| to index |new_index|.
DCHECK_NE(old_index, new_index);
DCHECK_GT(length, 0u);
// Remap move-to-higher-index operations to the equivalent move-to-lower-index
// operation. As an example, the permutation "ABCDEFG" -> "CDEFABG" can be
// thought of either as shifting 'AB' higher by 4, or by shifting 'CDEF' lower
// by 2.
if (new_index > old_index) {
Move(old_index + length, old_index, new_index - old_index);
return;
}
// We know that |old_index| > |new_index|, so this is a move to a lower index.
// Start by transforming |anchor_| and |active_|.
anchor_ = GetIndexAfterMove(old_index, new_index, length, anchor_);
set_active(GetIndexAfterMove(old_index, new_index, length, active_));
// When a range of items moves to a lower index, the affected items are those
// in the interval [new_index, old_index + length). Search within
// |selected_indices_| for indices that fall into that range.
auto low = std::lower_bound(selected_indices_.begin(),
selected_indices_.end(), new_index);
auto high =
std::lower_bound(low, selected_indices_.end(), old_index + length);
// The items originally in the interval [new_index, old_index) will see
// |length| many items inserted before them, so their indices increase.
auto middle = std::lower_bound(low, high, old_index);
size_t pivot_value = new_index + length;
for (auto it = low; it != middle; ++it) {
(*it) += length;
DCHECK_LE(pivot_value, *it);
DCHECK_LT(*it, old_index + length);
}
// The items originally in the interval [old_index, old_index + length) are
// shifted downward by (old_index - new_index) many spots, so their indices
// decrease.
for (auto it = middle; it != high; ++it) {
(*it) -= (old_index - new_index);
DCHECK_LE(new_index, *it);
DCHECK_LT(*it, pivot_value);
}
// Reorder the ranges [low, middle), and [middle, high) so that the elements
// in [middle, high) appear first, followed by [low, middle). This suffices to
// restore the sort condition on |selected_indices_|, because each range is
// still sorted piecewise, and |pivot_value| is a lower bound for elements in
// [low, middle), and an upper bound for [middle, high).
std::rotate(low, middle, high);
}
void ListSelectionModel::Clear() {
anchor_ = active_ = std::nullopt;
selected_indices_.clear();
}
std::string ListSelectionModel::ToString() const {
const auto optional_to_string = [](const auto& opt) {
return opt.has_value() ? base::NumberToString(opt.value())
: std::string("<none>");
};
std::vector<std::string> index_strings;
std::ranges::transform(
selected_indices_, std::back_inserter(index_strings),
[](const auto& index) { return base::NumberToString(index); });
return "active=" + optional_to_string(active_) +
" anchor=" + optional_to_string(anchor_) +
" selection=" + base::JoinString(index_strings, " ");
}
} // namespace ui
|