File: kalman_predictor.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (141 lines) | stat: -rw-r--r-- 4,540 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/base/prediction/kalman_predictor.h"

#include <algorithm>
#include <cmath>

#include "base/numerics/angle_conversions.h"
#include "base/time/time.h"
#include "ui/base/ui_base_features.h"

namespace {

// Influence of acceleration during each prediction sample
constexpr float kAccelerationInfluence = 0.5f;
// Influence of velocity during each prediction sample
constexpr float kVelocityInfluence = 1.0f;

}  // namespace

namespace ui {

constexpr base::TimeDelta InputPredictor::kMaxTimeDelta;
constexpr base::TimeDelta InputPredictor::kMaxResampleTime;
constexpr base::TimeDelta InputPredictor::kMaxPredictionTime;
constexpr base::TimeDelta InputPredictor::kTimeInterval;
constexpr base::TimeDelta InputPredictor::kMinTimeInterval;
constexpr base::TimeDelta KalmanPredictor::kMaxTimeInQueue;

KalmanPredictor::KalmanPredictor(unsigned int prediction_options)
    : prediction_options_(prediction_options) {}

KalmanPredictor::~KalmanPredictor() = default;

const char* KalmanPredictor::GetName() const {
  return features::kPredictorNameKalman;
}

void KalmanPredictor::Reset() {
  x_predictor_.Reset();
  y_predictor_.Reset();
  last_points_.clear();
  time_filter_.Reset();
}

void KalmanPredictor::Update(const InputData& cur_input) {
  base::TimeDelta dt;
  if (last_points_.size()) {
    // When last point is kMaxTimeDelta away, consider it is incontinuous.
    dt = cur_input.time_stamp - last_points_.back().time_stamp;
    if (dt > kMaxTimeDelta)
      Reset();
    else
      time_filter_.Update(dt.InMillisecondsF(), 0);
  }

  double dt_ms = time_filter_.GetPosition();
  last_points_.push_back(cur_input);
  x_predictor_.Update(cur_input.pos.x(), dt_ms);
  y_predictor_.Update(cur_input.pos.y(), dt_ms);

  while (last_points_.back().time_stamp - last_points_.front().time_stamp >
         kMaxTimeInQueue) {
    last_points_.pop_front();
  }
}

bool KalmanPredictor::HasPrediction() const {
  return x_predictor_.Stable() && y_predictor_.Stable();
}

std::unique_ptr<InputPredictor::InputData> KalmanPredictor::GeneratePrediction(
    base::TimeTicks predict_time,
    base::TimeDelta frame_interval) {
  if (!HasPrediction())
    return nullptr;

  DCHECK(last_points_.size());
  float pred_dt =
      (predict_time - last_points_.back().time_stamp).InMillisecondsF();

  gfx::PointF position(last_points_.back().pos.x(),
                       last_points_.back().pos.y());
  gfx::Vector2dF velocity = PredictVelocity();
  gfx::Vector2dF acceleration = PredictAcceleration();

  if (prediction_options_ & kDirectionCutOffEnabled) {
    gfx::Vector2dF future_velocity =
        velocity + ScaleVector2d(acceleration, pred_dt);
    if (gfx::DotProduct(velocity, future_velocity) <= 0)
      return nullptr;
  }

  position += ScaleVector2d(velocity, kVelocityInfluence * pred_dt);

  if (prediction_options_ & kHeuristicsEnabled) {
    float points_angle = 0.0f;
    for (size_t i = 2; i < last_points_.size(); i++) {
      gfx::Vector2dF first_dir =
          last_points_[i - 1].pos - last_points_[i - 2].pos;
      gfx::Vector2dF second_dir = last_points_[i].pos - last_points_[i - 1].pos;
      if (first_dir.Length() && second_dir.Length()) {
        points_angle += atan2(first_dir.x(), first_dir.y()) -
                        atan2(second_dir.x(), second_dir.y());
      }
    }
    if (base::RadToDeg(fabsf(points_angle)) > 15) {
      position += ScaleVector2d(acceleration,
                                kAccelerationInfluence * pred_dt * pred_dt);
    }
  } else {
    position +=
        ScaleVector2d(acceleration, kAccelerationInfluence * pred_dt * pred_dt);
  }

  return std::make_unique<InputData>(position, predict_time);
}

base::TimeDelta KalmanPredictor::TimeInterval() const {
  return time_filter_.GetPosition()
             ? std::max(kMinTimeInterval,
                        base::Milliseconds(time_filter_.GetPosition()))
             : kTimeInterval;
}

gfx::Vector2dF KalmanPredictor::PredictPosition() const {
  return gfx::Vector2dF(x_predictor_.GetPosition(), y_predictor_.GetPosition());
}

gfx::Vector2dF KalmanPredictor::PredictVelocity() const {
  return gfx::Vector2dF(x_predictor_.GetVelocity(), y_predictor_.GetVelocity());
}

gfx::Vector2dF KalmanPredictor::PredictAcceleration() const {
  return gfx::Vector2dF(x_predictor_.GetAcceleration(),
                        y_predictor_.GetAcceleration());
}

}  // namespace ui