1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/base/prediction/kalman_predictor.h"
#include <algorithm>
#include <cmath>
#include "base/numerics/angle_conversions.h"
#include "base/time/time.h"
#include "ui/base/ui_base_features.h"
namespace {
// Influence of acceleration during each prediction sample
constexpr float kAccelerationInfluence = 0.5f;
// Influence of velocity during each prediction sample
constexpr float kVelocityInfluence = 1.0f;
} // namespace
namespace ui {
constexpr base::TimeDelta InputPredictor::kMaxTimeDelta;
constexpr base::TimeDelta InputPredictor::kMaxResampleTime;
constexpr base::TimeDelta InputPredictor::kMaxPredictionTime;
constexpr base::TimeDelta InputPredictor::kTimeInterval;
constexpr base::TimeDelta InputPredictor::kMinTimeInterval;
constexpr base::TimeDelta KalmanPredictor::kMaxTimeInQueue;
KalmanPredictor::KalmanPredictor(unsigned int prediction_options)
: prediction_options_(prediction_options) {}
KalmanPredictor::~KalmanPredictor() = default;
const char* KalmanPredictor::GetName() const {
return features::kPredictorNameKalman;
}
void KalmanPredictor::Reset() {
x_predictor_.Reset();
y_predictor_.Reset();
last_points_.clear();
time_filter_.Reset();
}
void KalmanPredictor::Update(const InputData& cur_input) {
base::TimeDelta dt;
if (last_points_.size()) {
// When last point is kMaxTimeDelta away, consider it is incontinuous.
dt = cur_input.time_stamp - last_points_.back().time_stamp;
if (dt > kMaxTimeDelta)
Reset();
else
time_filter_.Update(dt.InMillisecondsF(), 0);
}
double dt_ms = time_filter_.GetPosition();
last_points_.push_back(cur_input);
x_predictor_.Update(cur_input.pos.x(), dt_ms);
y_predictor_.Update(cur_input.pos.y(), dt_ms);
while (last_points_.back().time_stamp - last_points_.front().time_stamp >
kMaxTimeInQueue) {
last_points_.pop_front();
}
}
bool KalmanPredictor::HasPrediction() const {
return x_predictor_.Stable() && y_predictor_.Stable();
}
std::unique_ptr<InputPredictor::InputData> KalmanPredictor::GeneratePrediction(
base::TimeTicks predict_time,
base::TimeDelta frame_interval) {
if (!HasPrediction())
return nullptr;
DCHECK(last_points_.size());
float pred_dt =
(predict_time - last_points_.back().time_stamp).InMillisecondsF();
gfx::PointF position(last_points_.back().pos.x(),
last_points_.back().pos.y());
gfx::Vector2dF velocity = PredictVelocity();
gfx::Vector2dF acceleration = PredictAcceleration();
if (prediction_options_ & kDirectionCutOffEnabled) {
gfx::Vector2dF future_velocity =
velocity + ScaleVector2d(acceleration, pred_dt);
if (gfx::DotProduct(velocity, future_velocity) <= 0)
return nullptr;
}
position += ScaleVector2d(velocity, kVelocityInfluence * pred_dt);
if (prediction_options_ & kHeuristicsEnabled) {
float points_angle = 0.0f;
for (size_t i = 2; i < last_points_.size(); i++) {
gfx::Vector2dF first_dir =
last_points_[i - 1].pos - last_points_[i - 2].pos;
gfx::Vector2dF second_dir = last_points_[i].pos - last_points_[i - 1].pos;
if (first_dir.Length() && second_dir.Length()) {
points_angle += atan2(first_dir.x(), first_dir.y()) -
atan2(second_dir.x(), second_dir.y());
}
}
if (base::RadToDeg(fabsf(points_angle)) > 15) {
position += ScaleVector2d(acceleration,
kAccelerationInfluence * pred_dt * pred_dt);
}
} else {
position +=
ScaleVector2d(acceleration, kAccelerationInfluence * pred_dt * pred_dt);
}
return std::make_unique<InputData>(position, predict_time);
}
base::TimeDelta KalmanPredictor::TimeInterval() const {
return time_filter_.GetPosition()
? std::max(kMinTimeInterval,
base::Milliseconds(time_filter_.GetPosition()))
: kTimeInterval;
}
gfx::Vector2dF KalmanPredictor::PredictPosition() const {
return gfx::Vector2dF(x_predictor_.GetPosition(), y_predictor_.GetPosition());
}
gfx::Vector2dF KalmanPredictor::PredictVelocity() const {
return gfx::Vector2dF(x_predictor_.GetVelocity(), y_predictor_.GetVelocity());
}
gfx::Vector2dF KalmanPredictor::PredictAcceleration() const {
return gfx::Vector2dF(x_predictor_.GetAcceleration(),
y_predictor_.GetAcceleration());
}
} // namespace ui
|