File: kalman_predictor_unittest.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (205 lines) | stat: -rw-r--r-- 7,948 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <vector>

#include "testing/gtest/include/gtest/gtest.h"
#include "ui/base/prediction/input_predictor_unittest_helpers.h"
#include "ui/base/prediction/kalman_predictor.h"

namespace ui {
namespace test {
namespace {

constexpr uint32_t kExpectedStableIterNum = 4;

struct DataSet {
  double initial_observation;
  std::vector<double> observation;
  std::vector<double> position;
  std::vector<double> velocity;
  std::vector<double> acceleration;
};

void ValidateSingleKalmanFilter(const DataSet& data) {
  std::unique_ptr<KalmanFilter> kalman_filter =
      std::make_unique<KalmanFilter>();
  constexpr double kEpsilon = 0.001;
  constexpr double kDtMillisecond = 8;
  kalman_filter->Update(data.initial_observation, kDtMillisecond);
  for (size_t i = 0; i < data.observation.size(); i++) {
    kalman_filter->Update(data.observation[i], kDtMillisecond);
    EXPECT_NEAR(data.position[i], kalman_filter->GetPosition(), kEpsilon);
    EXPECT_NEAR(data.velocity[i], kalman_filter->GetVelocity(), kEpsilon);
    EXPECT_NEAR(data.acceleration[i], kalman_filter->GetAcceleration(),
                kEpsilon);
  }
}

}  // namespace

class KalmanPredictorTest : public InputPredictorTest {
 public:
  explicit KalmanPredictorTest() {}

  KalmanPredictorTest(const KalmanPredictorTest&) = delete;
  KalmanPredictorTest& operator=(const KalmanPredictorTest&) = delete;

  void SetUp() override {
    predictor_ = std::make_unique<KalmanPredictor>(
        KalmanPredictor::PredictionOptions::kNone);
  }
};

// Test the a single axle kalman filter behavior with preset datas.
TEST_F(KalmanPredictorTest, KalmanFilterPredictedValue) {
  DataSet data;
  data.initial_observation = 0;
  data.observation = {1, 2, 3, 4, 5, 6};
  data.position = {0.999, 2.007, 3.001, 3.999, 5.000, 6.000};
  data.velocity = {0.242, 0.130, 0.122, 0.124, 0.125, 0.125};
  data.acceleration = {0.029, 0.000, 0.000, 0.000, 0.000, 0.000};
  ValidateSingleKalmanFilter(data);

  data.initial_observation = 0;
  data.observation = {1, 2, 4, 8, 16, 32};
  data.position = {0.999, 2.007, 3.976, 7.970, 15.950, 31.896};
  data.velocity = {0.242, 0.130, 0.298, 0.623, 1.240, 2.475};
  data.acceleration = {0.029, 0.000, 0.015, 0.034, 0.065, 0.130};
  ValidateSingleKalmanFilter(data);
}

TEST_F(KalmanPredictorTest, ShouldHasPrediction) {
  for (uint32_t i = 0; i < kExpectedStableIterNum; i++) {
    EXPECT_FALSE(predictor_->HasPrediction());
    InputPredictor::InputData data = {gfx::PointF(1, 1),
                                      FromMilliseconds(8 * i)};
    predictor_->Update(data);
  }
  EXPECT_TRUE(predictor_->HasPrediction());

  predictor_->Reset();
  EXPECT_FALSE(predictor_->HasPrediction());
}

// Tests the kalman predictor constant position.
TEST_F(KalmanPredictorTest, PredictConstantValue) {
  std::vector<double> x = {50, 50, 50, 50, 50, 50};
  std::vector<double> y = {-50, -50, -50, -50, -50, -50};
  std::vector<double> t = {8, 16, 24, 32, 40, 48};
  ValidatePredictor(x, y, t);
}

// Tests the kalman predictor predict constant velocity.
TEST_F(KalmanPredictorTest, PredictLinearValue) {
  // The kalman filter is initialized with a velocity of zero. The change of
  // velocity from zero to the constant value will be attributed to
  // acceleration. Given how the filter works, it will take a few updates for it
  // to get accustomed to a constant velocity.
  std::vector<double> x_stabilizer = {-40, -32, -24, -16, -8};
  std::vector<double> y_stabilizer = {-10, -2, 6, 14, 22};
  std::vector<double> t_stabilizer = {-40, -32, -24, -16, -8};
  for (size_t i = 0; i < t_stabilizer.size(); i++) {
    InputPredictor::InputData data = {
        gfx::PointF(x_stabilizer[i], y_stabilizer[i]),
        FromMilliseconds(t_stabilizer[i])};
    predictor_->Update(data);
  }

  std::vector<double> x = {0, 8, 16, 24, 32, 40, 48, 60};
  std::vector<double> y = {30, 38, 46, 54, 62, 70, 78, 90};
  std::vector<double> t = {0, 8, 16, 24, 32, 40, 48, 60};
  for (size_t i = 0; i < t.size(); i++) {
    if (predictor_->HasPrediction()) {
      auto result = predictor_->GeneratePrediction(FromMilliseconds(t[i]));
      EXPECT_TRUE(result);
      EXPECT_NEAR(result->pos.x(), x[i], kEpsilon);
      EXPECT_NEAR(result->pos.y(), y[i], kEpsilon);
    }
    InputPredictor::InputData data = {gfx::PointF(x[i], y[i]),
                                      FromMilliseconds(t[i])};
    predictor_->Update(data);
  }
}

// Tests the kalman predictor predict constant acceleration.
TEST_F(KalmanPredictorTest, PredictQuadraticValue) {
  std::vector<double> x = {0, 2, 8, 18, 32, 50, 72, 98};
  std::vector<double> y = {10, 11, 14, 19, 26, 35, 46, 59};
  std::vector<double> t = {8, 16, 24, 32, 40, 48, 56, 64};
  ValidatePredictor(x, y, t);
}

// Tests the kalman predictor time interval filter.
TEST_F(KalmanPredictorTest, TimeInterval) {
  EXPECT_EQ(predictor_->TimeInterval(), kExpectedDefaultTimeInterval);
  std::vector<double> x = {0, 2, 8, 18};
  std::vector<double> y = {10, 11, 14, 19};
  std::vector<double> t = {7, 14, 21, 28};
  for (size_t i = 0; i < t.size(); i++) {
    InputPredictor::InputData data = {gfx::PointF(x[i], y[i]),
                                      FromMilliseconds(t[i])};
    predictor_->Update(data);
  }
  EXPECT_EQ(predictor_->TimeInterval().InMillisecondsF(),
            base::Milliseconds(7).InMillisecondsF());
}

// Test the benefit from the heuristic approach on noisy data.
TEST_F(KalmanPredictorTest, HeuristicApproach) {
  std::unique_ptr<InputPredictor> heuristic_predictor =
      std::make_unique<KalmanPredictor>(
          KalmanPredictor::PredictionOptions::kHeuristicsEnabled);
  std::vector<double> x_stabilizer = {-40, -32, -24, -16, -8, 0};
  std::vector<double> y_stabilizer = {-40, -32, -24, -16, -8, 0};
  std::vector<double> t_stabilizer = {-40, -32, -24, -16, -8, 0};
  for (size_t i = 0; i < t_stabilizer.size(); i++) {
    InputPredictor::InputData data = {
        gfx::PointF(x_stabilizer[i], y_stabilizer[i]),
        FromMilliseconds(t_stabilizer[i])};
    predictor_->Update(data);
    heuristic_predictor->Update(data);
  }

  std::vector<double> x = {7, 17, 23, 33, 39, 49, 60};
  std::vector<double> y = {9, 15, 25, 31, 41, 47, 60};
  std::vector<double> t = {8, 16, 24, 32, 40, 48, 60};
  for (size_t i = 0; i < t.size(); i++) {
    gfx::PointF point(x[i], y[i]);
    if (heuristic_predictor->HasPrediction() && predictor_->HasPrediction()) {
      auto heuristic_result =
          heuristic_predictor->GeneratePrediction(FromMilliseconds(t[i]));
      auto result = predictor_->GeneratePrediction(FromMilliseconds(t[i]));
      EXPECT_TRUE(heuristic_result);
      EXPECT_TRUE(result);
      EXPECT_LE((heuristic_result->pos - point).Length(),
                (result->pos - point).Length());
    }
    InputPredictor::InputData data = {point, FromMilliseconds(t[i])};
    heuristic_predictor->Update(data);
    predictor_->Update(data);
  }
}

// Test the kalman predictor prevention of rubber-banding.
TEST_F(KalmanPredictorTest, DirectionalCutOff) {
  predictor_ = std::make_unique<KalmanPredictor>(
      KalmanPredictor::PredictionOptions::kDirectionCutOffEnabled);
  std::vector<double> x = {98, 72, 50, 32, 18, 8, 2};
  std::vector<double> y = {49, 36, 25, 16, 9, 4, 1};
  std::vector<double> t = {8, 16, 24, 32, 40, 48, 56};
  for (size_t i = 0; i < t.size(); i++) {
    InputPredictor::InputData data = {gfx::PointF(x[i], y[i]),
                                      FromMilliseconds(t[i])};
    predictor_->Update(data);
  }
  // On t=64, position is (0,0), and in t=72 it is (2,1) again which means that
  // direction has shifted in the opposite direction and prediction should be
  // cut off.
  auto result = predictor_->GeneratePrediction(FromMilliseconds(72));
  EXPECT_FALSE(result);
}

}  // namespace test
}  // namespace ui