1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/base/prediction/linear_predictor.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/base/prediction/input_predictor_unittest_helpers.h"
#include "ui/base/ui_base_features.h"
namespace ui {
namespace test {
class LinearPredictorFirstOrderTest : public InputPredictorTest {
public:
explicit LinearPredictorFirstOrderTest() {}
LinearPredictorFirstOrderTest(const LinearPredictorFirstOrderTest&) = delete;
LinearPredictorFirstOrderTest& operator=(
const LinearPredictorFirstOrderTest&) = delete;
void SetUp() override {
predictor_ = std::make_unique<LinearPredictor>(
LinearPredictor::EquationOrder::kFirstOrder);
}
};
class LinearPredictorSecondOrderTest : public InputPredictorTest {
public:
explicit LinearPredictorSecondOrderTest() {}
LinearPredictorSecondOrderTest(const LinearPredictorSecondOrderTest&) =
delete;
LinearPredictorSecondOrderTest& operator=(
const LinearPredictorSecondOrderTest&) = delete;
void SetUp() override {
predictor_ = std::make_unique<LinearPredictor>(
LinearPredictor::EquationOrder::kSecondOrder);
}
};
// Test if the output name of the predictor is taking account of the
// equation order
TEST_F(LinearPredictorFirstOrderTest, GetName) {
EXPECT_EQ(predictor_->GetName(), features::kPredictorNameLinearFirst);
}
// Test if the output name of the predictor is taking account of the
// equation order
TEST_F(LinearPredictorSecondOrderTest, GetName) {
EXPECT_EQ(predictor_->GetName(), features::kPredictorNameLinearSecond);
}
// Test that the number of events required to compute a prediction is correct
TEST_F(LinearPredictorFirstOrderTest, ShouldHavePrediction) {
LinearPredictor predictor(LinearPredictor::EquationOrder::kFirstOrder);
size_t n = static_cast<size_t>(LinearPredictor::EquationOrder::kFirstOrder);
for (size_t i = 0; i < n; i++) {
EXPECT_FALSE(predictor.HasPrediction());
predictor.Update(InputPredictor::InputData());
}
EXPECT_TRUE(predictor.HasPrediction());
predictor.Reset();
EXPECT_FALSE(predictor.HasPrediction());
}
// Test that the number of events required to compute a prediction is correct
TEST_F(LinearPredictorSecondOrderTest, ShouldHavePrediction) {
LinearPredictor predictor(LinearPredictor::EquationOrder::kSecondOrder);
size_t n1 = static_cast<size_t>(LinearPredictor::EquationOrder::kFirstOrder);
size_t n2 = static_cast<size_t>(LinearPredictor::EquationOrder::kSecondOrder);
for (size_t i = 0; i < n2; i++) {
if (i < n1)
EXPECT_FALSE(predictor.HasPrediction());
else
EXPECT_TRUE(predictor.HasPrediction());
predictor.Update(InputPredictor::InputData());
}
EXPECT_TRUE(predictor.HasPrediction());
predictor.Reset();
EXPECT_FALSE(predictor.HasPrediction());
}
TEST_F(LinearPredictorFirstOrderTest, PredictedValue) {
std::vector<double> x = {10, 20};
std::vector<double> y = {5, 25};
std::vector<double> t = {17, 33};
// Compensating 23 ms
// 1st order prediction at 33 + 23 = 56 ms
std::vector<double> pred_ts = {56};
std::vector<double> pred_x = {34.37};
std::vector<double> pred_y = {53.75};
ValidatePredictor(x, y, t, pred_ts, pred_x, pred_y);
}
TEST_F(LinearPredictorSecondOrderTest, PredictedValue) {
std::vector<double> x = {0, 10, 20};
std::vector<double> y = {0, 5, 25};
std::vector<double> t = {0, 17, 33};
// Compensating 23 ms in both results
// 1st order prediction at 17 + 23 = 40 ms
// 2nd order prediction at 33 + 23 = 56 ms
std::vector<double> pred_ts = {40, 56};
std::vector<double> pred_x = {23.52, 34.98};
std::vector<double> pred_y = {11.76, 69.55};
ValidatePredictor(x, y, t, pred_ts, pred_x, pred_y);
}
// Test constant position and constant velocity
TEST_F(LinearPredictorSecondOrderTest, ConstantPositionAndVelocity) {
std::vector<double> x = {10, 10, 10, 10, 10}; // constant position
std::vector<double> y = {0, 5, 10, 15, 20}; // constant velocity
std::vector<double> t = {0, 7, 14, 21, 28}; // regular interval
// since velocity is constant, acceleration should be 0 which simplifies
// computations
// Compensating 10 ms in all results
std::vector<double> pred_ts = {17, 24, 31, 38};
std::vector<double> pred_x = {10, 10, 10, 10};
std::vector<double> pred_y = {12.14, 17.14, 22.14, 27.14};
ValidatePredictor(x, y, t, pred_ts, pred_x, pred_y);
}
// Test time interval in first order
TEST_F(LinearPredictorFirstOrderTest, TimeInterval) {
EXPECT_EQ(predictor_->TimeInterval(), kExpectedDefaultTimeInterval);
std::vector<double> x = {10, 20};
std::vector<double> y = {5, 25};
std::vector<double> t = {17, 33};
size_t n = static_cast<size_t>(LinearPredictor::EquationOrder::kFirstOrder);
for (size_t i = 0; i < n; i++) {
predictor_->Update({gfx::PointF(x[i], y[i]), FromMilliseconds(t[i])});
}
EXPECT_EQ(predictor_->TimeInterval(), base::Milliseconds(t[1] - t[0]));
}
// Test time interval in second order
TEST_F(LinearPredictorSecondOrderTest, TimeInterval) {
EXPECT_EQ(predictor_->TimeInterval(), kExpectedDefaultTimeInterval);
std::vector<double> x = {0, 10, 20};
std::vector<double> y = {0, 5, 25};
std::vector<double> t = {0, 17, 33};
size_t n = static_cast<size_t>(LinearPredictor::EquationOrder::kSecondOrder);
for (size_t i = 0; i < n; i++) {
predictor_->Update({gfx::PointF(x[i], y[i]), FromMilliseconds(t[i])});
}
EXPECT_EQ(predictor_->TimeInterval(), base::Milliseconds((t[2] - t[0]) / 2));
}
} // namespace test
} // namespace ui
|