1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/base/prediction/prediction_metrics_handler.h"
#include <string_view>
#include <utility>
#include "base/metrics/histogram.h"
#include "base/strings/strcat.h"
namespace ui {
namespace {
base::HistogramBase* GetHistogram(std::string_view name,
std::string_view suffix) {
return base::Histogram::FactoryGet(
base::StrCat({name, ".", suffix}), 1, 1000, 50,
base::HistogramBase::kUmaTargetedHistogramFlag);
}
} // namespace
PredictionMetricsHandler::PredictionMetricsHandler(std::string histogram_name)
: histogram_name_(std::move(histogram_name)),
over_prediction_histogram_(
*GetHistogram(histogram_name_, "OverPrediction")),
under_prediction_histogram_(
*GetHistogram(histogram_name_, "UnderPrediction")),
prediction_score_histogram_(
*GetHistogram(histogram_name_, "PredictionScore")),
frame_over_prediction_histogram_(
*GetHistogram(histogram_name_, "FrameOverPrediction")),
frame_under_prediction_histogram_(
*GetHistogram(histogram_name_, "FrameUnderPrediction")),
frame_prediction_score_histogram_(
*GetHistogram(histogram_name_, "FramePredictionScore")),
prediction_jitter_histogram_(
*GetHistogram(histogram_name_, "PredictionJitter")),
visual_jitter_histogram_(*GetHistogram(histogram_name_, "VisualJitter")) {
}
PredictionMetricsHandler::~PredictionMetricsHandler() = default;
void PredictionMetricsHandler::AddRealEvent(const gfx::PointF& pos,
const base::TimeTicks& time_stamp,
const base::TimeTicks& frame_time,
bool scrolling) {
// Real events should arrive in order over time, and if they aren't then just
// bail. Early out instead of DCHECKing in order to handle delegated ink
// trails. Delegated ink trails may submit points out of order in a situation
// such as three points with timestamps = 1, 2, and 3 making up the trail on
// one frame, and then on the next frame only the points with timestamp 2 and
// 3 make up the trail. In this case, 2 would be added as a real point again,
// but it has a timestamp earlier than 3, so a DCHECK would fail. Early out
// here will not impact correctness since 2 already exists in |events_queue_|.
if (!events_queue_.empty() && time_stamp <= events_queue_.back().time_stamp) {
// There can be situations where the metadata does not arrive in time for
// the vsync. Rather than skipping drawing for that frame, the metadata is
// kept and the trail is drawn from the metadata point to the latest
// point in the trail. However, the metadata and points relatively near it
// can be cleared from events_queue_ during ComputeMetrics(). Therefore the
// following DCHECK is hit when the older points are re-added as real
// events. Since those points are not relevant to the front of the trail,
// where the prediction happens, they can safely be exempt from the
// following DCHECK. Only points that are at or later than the front of the
// events_queue_ need to be verified.
if (time_stamp < events_queue_.front().time_stamp)
return;
// Confirm that the above assertion is true, and that timestamp 2 (from
// the above example) exists in |events_queue_|.
bool event_exists = false;
for (uint64_t i = 0; i < events_queue_.size() && !event_exists; ++i) {
if (events_queue_[i].time_stamp == time_stamp)
event_exists = true;
}
DCHECK(event_exists);
return;
}
EventData e;
if (scrolling)
e.pos = gfx::PointF(0, pos.y());
else
e.pos = pos;
e.time_stamp = time_stamp;
e.frame_time = frame_time;
events_queue_.push_back(e);
}
void PredictionMetricsHandler::AddPredictedEvent(
const gfx::PointF& pos,
const base::TimeTicks& time_stamp,
const base::TimeTicks& frame_time,
bool scrolling) {
DCHECK(!events_queue_.empty());
// If the predicted event is prior to the first real event, ignore it as we
// don't have enough data for interpolation.
if (time_stamp < events_queue_.front().time_stamp)
return;
// TODO(nzolghadr): The following DCHECK is commented out due to
// crbug.com/1017661. More investigation needs to be done as why this happens.
// DCHECK(predicted_events_queue_.empty() ||
// time_stamp >= predicted_events_queue_.back().time_stamp);
bool needs_sorting = false;
if (!predicted_events_queue_.empty() &&
time_stamp < predicted_events_queue_.back().time_stamp)
needs_sorting = true;
EventData e;
if (scrolling)
e.pos = gfx::PointF(0, pos.y());
else
e.pos = pos;
e.time_stamp = time_stamp;
e.frame_time = frame_time;
predicted_events_queue_.push_back(e);
// TODO(nzolghadr): This should never be needed. Something seems to be wrong
// in the tests. See crbug.com/1017661.
if (needs_sorting) {
std::sort(predicted_events_queue_.begin(), predicted_events_queue_.end(),
[](const EventData& a, const EventData& b) {
return a.time_stamp < b.time_stamp;
});
}
}
void PredictionMetricsHandler::EvaluatePrediction() {
while (!predicted_events_queue_.empty()) {
// Not enough events to compute the metrics, do not compute for now.
if (events_queue_.size() < 2 ||
events_queue_.back().time_stamp <=
predicted_events_queue_.front().time_stamp ||
events_queue_.back().time_stamp <=
predicted_events_queue_.front().frame_time) {
return;
}
ComputeMetrics();
last_predicted_ = predicted_events_queue_.front().pos;
last_interpolated_ = interpolated_;
last_frame_interpolated_ = frame_interpolated_;
predicted_events_queue_.pop_front();
}
}
void PredictionMetricsHandler::Reset() {
events_queue_.clear();
predicted_events_queue_.clear();
last_predicted_ = std::nullopt;
}
int PredictionMetricsHandler::GetInterpolatedEventForPredictedEvent(
const base::TimeTicks& interpolation_timestamp,
gfx::PointF* interpolated) {
size_t idx = 0;
while (idx < events_queue_.size() &&
interpolation_timestamp >= events_queue_[idx].time_stamp)
idx++;
if (idx == 0 || idx == events_queue_.size())
return -1;
const float alpha =
(interpolation_timestamp - events_queue_[idx - 1].time_stamp) /
(events_queue_[idx].time_stamp - events_queue_[idx - 1].time_stamp);
*interpolated =
events_queue_[idx - 1].pos +
ScaleVector2d(events_queue_[idx].pos - events_queue_[idx - 1].pos, alpha);
return idx - 1;
}
void PredictionMetricsHandler::ComputeMetrics() {
// Compute interpolations at predicted time and frame time.
int low_idx_interpolated = GetInterpolatedEventForPredictedEvent(
predicted_events_queue_.front().time_stamp, &interpolated_);
int low_idx_frame_interpolated = GetInterpolatedEventForPredictedEvent(
predicted_events_queue_.front().frame_time, &frame_interpolated_);
next_real_ = events_queue_[low_idx_interpolated + 1].pos;
next_real_point_after_frame_ =
events_queue_[low_idx_frame_interpolated + 1].pos;
int first_needed_event =
std::min(low_idx_interpolated, low_idx_frame_interpolated);
// Return if any of the interpolation is not found.
if (first_needed_event == -1)
return;
// Clean real events queue.
for (int i = 0; i < first_needed_event - 1; i++)
events_queue_.pop_front();
double score = ComputeOverUnderPredictionMetric();
if (score >= 0) {
over_prediction_histogram_->Add(score);
} else {
under_prediction_histogram_->Add(-score);
}
prediction_score_histogram_->Add(std::abs(score));
double frame_score = ComputeFrameOverUnderPredictionMetric();
if (frame_score >= 0) {
frame_over_prediction_histogram_->Add(frame_score);
} else {
frame_under_prediction_histogram_->Add(-frame_score);
}
frame_prediction_score_histogram_->Add(std::abs(frame_score));
// Need |last_predicted_| to compute Jitter metrics.
if (!last_predicted_.has_value())
return;
prediction_jitter_histogram_->Add(ComputePredictionJitterMetric());
visual_jitter_histogram_->Add(ComputeVisualJitterMetric());
}
double PredictionMetricsHandler::ComputeOverUnderPredictionMetric() const {
gfx::Vector2dF real_direction = next_real_ - interpolated_;
gfx::Vector2dF relative_direction =
predicted_events_queue_.front().pos - interpolated_;
if (gfx::DotProduct(real_direction, relative_direction) >= 0)
return relative_direction.Length();
else
return -relative_direction.Length();
}
double PredictionMetricsHandler::ComputeFrameOverUnderPredictionMetric() const {
gfx::Vector2dF real_direction =
next_real_point_after_frame_ - frame_interpolated_;
gfx::Vector2dF relative_direction =
predicted_events_queue_.front().pos - frame_interpolated_;
if (gfx::DotProduct(real_direction, relative_direction) >= 0)
return relative_direction.Length();
else
return -relative_direction.Length();
}
double PredictionMetricsHandler::ComputePredictionJitterMetric() {
gfx::Vector2dF delta = interpolated_ - predicted_events_queue_.front().pos;
gfx::Vector2dF last_delta = last_interpolated_ - last_predicted_.value();
return (delta - last_delta).Length();
}
double PredictionMetricsHandler::ComputeVisualJitterMetric() {
gfx::Vector2dF delta =
frame_interpolated_ - predicted_events_queue_.front().pos;
gfx::Vector2dF last_delta =
last_frame_interpolated_ - last_predicted_.value();
return (delta - last_delta).Length();
}
} // namespace ui
|