1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "ui/base/x/x11_display_util.h"
#include <dlfcn.h>
#include <algorithm>
#include <bit>
#include <bitset>
#include <numeric>
#include <queue>
#include <unordered_set>
#include "base/bits.h"
#include "base/command_line.h"
#include "base/containers/flat_map.h"
#include "base/logging.h"
#include "base/numerics/clamped_math.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "ui/base/l10n/l10n_util.h"
#include "ui/base/x/x11_util.h"
#include "ui/display/util/display_util.h"
#include "ui/display/util/edid_parser.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/switches.h"
#include "ui/gfx/x/atom_cache.h"
#include "ui/gfx/x/connection.h"
#include "ui/gfx/x/randr.h"
#include "ui/strings/grit/ui_strings.h"
namespace ui {
namespace {
// Need at least xrandr version 1.3
constexpr std::pair<uint32_t, uint32_t> kMinVersionXrandr{1, 3};
constexpr const char kRandrEdidProperty[] = "EDID";
std::map<x11::RandR::Output, size_t> GetMonitors(
const x11::Response<x11::RandR::GetMonitorsReply>& reply) {
std::map<x11::RandR::Output, size_t> output_to_monitor;
if (!reply) {
return output_to_monitor;
}
for (size_t monitor = 0; monitor < reply->monitors.size(); monitor++) {
for (x11::RandR::Output output : reply->monitors[monitor].outputs) {
output_to_monitor[output] = monitor;
}
}
return output_to_monitor;
}
x11::Future<x11::GetPropertyReply> GetWorkAreaFuture(
x11::Connection* connection) {
return connection->GetProperty({
.window = connection->default_root(),
.property = connection->GetAtom("_NET_WORKAREA"),
.long_length = 4,
});
}
gfx::Rect GetWorkAreaSync(x11::Future<x11::GetPropertyReply> future) {
auto response = future.Sync();
if (!response || response->format != 32 || response->value_len != 4) {
return gfx::Rect();
}
const uint32_t* value = response->value->cast_to<uint32_t>();
return gfx::Rect(value[0], value[1], value[2], value[3]);
}
x11::Future<x11::GetPropertyReply> GetIccProfileFuture(
x11::Connection* connection,
size_t monitor) {
std::string atom_name = monitor == 0
? "_ICC_PROFILE"
: base::StringPrintf("_ICC_PROFILE_%zu", monitor);
auto future = connection->GetProperty({
.window = connection->default_root(),
.property = x11::GetAtom(atom_name.c_str()),
.long_length = std::numeric_limits<uint32_t>::max(),
});
future.IgnoreError();
return future;
}
gfx::ICCProfile GetIccProfileSync(x11::Future<x11::GetPropertyReply> future) {
auto response = future.Sync();
if (!response || !response->value_len) {
return gfx::ICCProfile();
}
return gfx::ICCProfile::FromData(response->value->bytes(),
response->value_len * response->format / 8u);
}
x11::Future<x11::RandR::GetOutputPropertyReply> GetEdidFuture(
x11::Connection* connection,
x11::RandR::Output output) {
auto future = connection->randr().GetOutputProperty({
.output = output,
.property = x11::GetAtom(kRandrEdidProperty),
.long_length = 128,
});
future.IgnoreError();
return future;
}
// Sets the work area on a list of displays. The work area for each display
// must already be initialized to the display bounds. At most one display out
// of |displays| will be affected.
void ClipWorkArea(std::vector<display::Display>* displays,
size_t primary_display_index,
const gfx::Rect& net_workarea) {
if (net_workarea.IsEmpty()) {
return;
}
auto get_work_area = [&](const display::Display& display) {
float scale = display::Display::HasForceDeviceScaleFactor()
? display::Display::GetForcedDeviceScaleFactor()
: display.device_scale_factor();
return gfx::ScaleToEnclosingRect(net_workarea, 1.0f / scale);
};
// If the work area entirely contains exactly one display, assume it's meant
// for that display (and so do nothing).
if (std::ranges::count_if(*displays, [&](const display::Display& display) {
return get_work_area(display).Contains(display.bounds());
}) == 1) {
return;
}
// If the work area is entirely contained within exactly one display, assume
// it's meant for that display and intersect the work area with only that
// display.
const auto found =
std::ranges::find_if(*displays, [&](const display::Display& display) {
return display.bounds().Contains(get_work_area(display));
});
// If the work area spans multiple displays, intersect the work area with the
// primary display, like GTK does.
display::Display& primary =
found == displays->end() ? (*displays)[primary_display_index] : *found;
gfx::Rect work_area = get_work_area(primary);
work_area.Intersect(primary.work_area());
if (!work_area.IsEmpty()) {
primary.set_work_area(work_area);
}
}
float GetRefreshRateFromXRRModeInfo(
const std::vector<x11::RandR::ModeInfo>& modes,
x11::RandR::Mode current_mode_id) {
for (const auto& mode_info : modes) {
if (static_cast<x11::RandR::Mode>(mode_info.id) != current_mode_id) {
continue;
}
if (!mode_info.htotal || !mode_info.vtotal) {
return 0;
}
// Refresh Rate = Pixel Clock / (Horizontal Total * Vertical Total)
return mode_info.dot_clock /
static_cast<float>(mode_info.htotal * mode_info.vtotal);
}
return 0;
}
int DefaultBitsPerComponent() {
auto* connection = x11::Connection::Get();
const x11::VisualType& visual = connection->default_root_visual();
// The mask fields are only valid for DirectColor and TrueColor classes.
if (visual.c_class == x11::VisualClass::DirectColor ||
visual.c_class == x11::VisualClass::TrueColor) {
// RGB components are packed into fixed size integers for each visual. The
// layout of bits in the packing is given by
// |visual.{red,green,blue}_mask|. Count the number of bits to get the
// number of bits per component.
auto bits = [](auto mask) {
return std::bitset<sizeof(mask) * 8>{mask}.count();
};
size_t red_bits = bits(visual.red_mask);
size_t green_bits = bits(visual.green_mask);
size_t blue_bits = bits(visual.blue_mask);
if (red_bits == green_bits && red_bits == blue_bits) {
return red_bits;
}
}
// Next, try getting the number of colormap entries per subfield. If it's a
// power of 2, log2 is a possible guess for the number of bits per component.
if (std::has_single_bit(visual.colormap_entries)) {
return base::bits::Log2Ceiling(visual.colormap_entries);
}
// |bits_per_rgb| can sometimes be unreliable (may be 11 for 30bpp visuals),
// so only use it as a last resort.
return visual.bits_per_rgb_value;
}
// Get the EDID data from the `output` and stores to `edid`.
std::vector<uint8_t> GetEdidProperty(
x11::Response<x11::RandR::GetOutputPropertyReply> response) {
std::vector<uint8_t> edid;
if (response && response->format == 8 && response->type != x11::Atom::None) {
edid = std::move(response->data);
}
return edid;
}
float GetDisplayScale(const gfx::Rect& bounds,
const display::DisplayConfig& display_config) {
constexpr auto kMaxDist = std::make_pair(INT_MAX, INT_MAX);
auto min_dist_scale = std::make_pair(kMaxDist, display_config.primary_scale);
for (const auto& geometry : display_config.display_geometries) {
const auto dist_scale = std::make_pair(
RectDistance(geometry.bounds_px, bounds), geometry.scale);
min_dist_scale = std::min(min_dist_scale, dist_scale);
}
return min_dist_scale.second;
}
gfx::PointF DisplayOriginPxToDip(const display::Display& parent,
const display::Display& child,
const gfx::PointF& parent_origin_dip) {
const gfx::Rect parent_px = parent.bounds();
const gfx::Rect child_px = child.bounds();
const float parent_scale = parent.device_scale_factor();
const float child_scale = child.device_scale_factor();
// Given a range [parent_l_px, parent_r_px) with scale factor `parent_scale`
// and with `parent_l_px` mapping to `parent_l_dip`, and another range
// [child_l_px, child_r_px) with scale factor `child_scale`, converts
// `child_l_px` to DIPs in the child's coordinate system.
auto map_coordinate = [&](int parent_l_px, int parent_r_px, int child_l_px,
int child_r_px, float parent_l_dip) {
const base::ClampedNumeric<int> l = std::max(parent_l_px, child_l_px);
const base::ClampedNumeric<int> r = std::min(parent_r_px, child_r_px);
const float mid_px = std::midpoint<float>(float(l), float(r));
const float mid_dip = (mid_px - parent_l_px) / parent_scale + parent_l_dip;
return (child_l_px - mid_px) / child_scale + mid_dip;
};
const float x = map_coordinate(parent_px.x(), parent_px.right(), child_px.x(),
child_px.right(), parent_origin_dip.x());
const float y =
map_coordinate(parent_px.y(), parent_px.bottom(), child_px.y(),
child_px.bottom(), parent_origin_dip.y());
return {x, y};
}
} // namespace
std::vector<display::Display> GetFallbackDisplayList(
float scale,
size_t* primary_display_index_out) {
auto* connection = x11::Connection::Get();
const auto& screen = connection->default_screen();
gfx::Size physical_size(screen.width_in_millimeters,
screen.height_in_millimeters);
int width = screen.width_in_pixels;
int height = screen.height_in_pixels;
gfx::Rect bounds_in_pixels(0, 0, width, height);
display::Display gfx_display(0, bounds_in_pixels);
if (!display::Display::HasForceDeviceScaleFactor() &&
display::IsDisplaySizeValid(physical_size)) {
DCHECK_LE(1.0f, scale);
gfx_display.set_size_in_pixels(bounds_in_pixels.size());
gfx_display.SetScale(scale);
auto bounds_dip = gfx::ScaleToEnclosingRect(bounds_in_pixels, 1.0f / scale);
gfx_display.set_bounds(bounds_dip);
gfx_display.set_work_area(bounds_dip);
} else {
scale = 1;
}
gfx_display.set_color_depth(screen.root_depth);
gfx_display.set_depth_per_component(DefaultBitsPerComponent());
std::vector<display::Display> displays{gfx_display};
*primary_display_index_out = 0;
ClipWorkArea(&displays, *primary_display_index_out,
GetWorkAreaSync(GetWorkAreaFuture(connection)));
return displays;
}
std::vector<display::Display> BuildDisplaysFromXRandRInfo(
const display::DisplayConfig& display_config,
size_t* primary_display_index_out) {
DCHECK(primary_display_index_out);
auto* command_line = base::CommandLine::ForCurrentProcess();
const float primary_scale = display_config.primary_scale;
auto* connection = x11::Connection::Get();
DCHECK(connection->randr_version() >= kMinVersionXrandr);
auto& randr = connection->randr();
auto x_root_window = ui::GetX11RootWindow();
std::vector<display::Display> displays;
auto resources_future = randr.GetScreenResourcesCurrent({x_root_window});
auto output_primary_future = randr.GetOutputPrimary({x_root_window});
x11::Future<x11::RandR::GetMonitorsReply> monitors_future;
if (connection->randr_version() >= std::pair<uint32_t, uint32_t>{1, 5}) {
monitors_future = randr.GetMonitors(x_root_window);
}
auto work_area_future = GetWorkAreaFuture(connection);
connection->Flush();
auto resources = resources_future.Sync();
if (!resources) {
LOG(ERROR) << "XRandR returned no displays; falling back to root window";
return GetFallbackDisplayList(primary_scale, primary_display_index_out);
}
const int depth = connection->default_screen().root_depth;
const int bits_per_component = DefaultBitsPerComponent();
auto output_primary = output_primary_future.Sync();
if (!output_primary) {
return GetFallbackDisplayList(primary_scale, primary_display_index_out);
}
x11::RandR::Output primary_display_id = output_primary->output;
const auto monitors_reply = monitors_future.Sync();
const auto output_to_monitor = GetMonitors(monitors_reply);
const size_t n_iccs =
monitors_reply ? std::max<size_t>(1, monitors_reply->monitors.size()) : 1;
int explicit_primary_display_index = -1;
int monitor_order_primary_display_index = -1;
std::vector<x11::Future<x11::RandR::GetCrtcInfoReply>> crtc_futures{};
crtc_futures.reserve(resources->crtcs.size());
for (auto crtc : resources->crtcs) {
crtc_futures.push_back(
randr.GetCrtcInfo({crtc, resources->config_timestamp}));
}
connection->Flush();
std::vector<x11::Future<x11::GetPropertyReply>> icc_futures{n_iccs};
if (!command_line->HasSwitch(switches::kHeadless)) {
for (size_t monitor = 0; monitor < n_iccs; ++monitor) {
icc_futures[monitor] = GetIccProfileFuture(connection, monitor);
}
connection->Flush();
}
std::vector<x11::Future<x11::RandR::GetOutputInfoReply>> output_futures{};
output_futures.reserve(resources->outputs.size());
for (auto output : resources->outputs) {
output_futures.push_back(
randr.GetOutputInfo({output, resources->config_timestamp}));
}
connection->Flush();
std::vector<x11::Future<x11::RandR::GetOutputPropertyReply>> edid_futures{};
edid_futures.reserve(resources->outputs.size());
for (auto output : resources->outputs) {
edid_futures.push_back(GetEdidFuture(connection, output));
}
connection->Flush();
base::flat_map<x11::RandR::Crtc, x11::RandR::GetCrtcInfoResponse> crtcs;
for (size_t i = 0; i < resources->crtcs.size(); ++i) {
crtcs.emplace(resources->crtcs[i], crtc_futures[i].Sync());
}
std::vector<gfx::ICCProfile> iccs;
iccs.reserve(n_iccs);
for (auto& future : icc_futures) {
iccs.push_back(GetIccProfileSync(std::move(future)));
}
for (size_t i = 0; i < resources->outputs.size(); i++) {
x11::RandR::Output output_id = resources->outputs[i];
auto output_info = output_futures[i].Sync();
if (!output_info) {
continue;
}
if (output_info->connection != x11::RandR::RandRConnection::Connected) {
continue;
}
bool is_primary_display = (output_id == primary_display_id);
if (output_info->crtc == static_cast<x11::RandR::Crtc>(0)) {
continue;
}
auto crtc_it = crtcs.find(output_info->crtc);
if (crtc_it == crtcs.end()) {
continue;
}
const auto& crtc = crtc_it->second;
if (!crtc) {
continue;
}
display::EdidParser edid_parser(GetEdidProperty(edid_futures[i].Sync()));
auto output_32 = static_cast<uint32_t>(output_id);
int64_t display_id =
output_32 > 0xff ? 0 : edid_parser.GetIndexBasedDisplayId(output_32);
// It isn't ideal, but if we can't parse the EDID data, fall back on the
// display number.
if (!display_id) {
display_id = i;
}
gfx::Rect crtc_bounds(crtc->x, crtc->y, crtc->width, crtc->height);
const size_t display_index = displays.size();
display::Display& display = displays.emplace_back(display_id, crtc_bounds);
display.set_native_origin(crtc_bounds.origin());
display.set_audio_formats(edid_parser.audio_formats());
switch (crtc->rotation) {
case x11::RandR::Rotation::Rotate_0:
display.set_rotation(display::Display::ROTATE_0);
break;
case x11::RandR::Rotation::Rotate_90:
display.set_rotation(display::Display::ROTATE_90);
break;
case x11::RandR::Rotation::Rotate_180:
display.set_rotation(display::Display::ROTATE_180);
break;
case x11::RandR::Rotation::Rotate_270:
display.set_rotation(display::Display::ROTATE_270);
break;
case x11::RandR::Rotation::Reflect_X:
case x11::RandR::Rotation::Reflect_Y:
NOTIMPLEMENTED();
}
if (is_primary_display) {
explicit_primary_display_index = display_index;
}
const std::string name(output_info->name.begin(), output_info->name.end());
auto process_type =
command_line->GetSwitchValueASCII("type");
if (name.starts_with("eDP") || name.starts_with("LVDS")) {
display::SetInternalDisplayIds({display_id});
// For browser process which has access to resource bundle,
// use localized variant of "Built-in display" for internal displays.
// This follows the ozone DRM behavior (i.e. ChromeOS).
if (process_type.empty()) {
display.set_label(l10n_util::GetStringUTF8(IDS_DISPLAY_NAME_INTERNAL));
} else {
display.set_label("Built-in display");
}
} else {
display.set_label(edid_parser.display_name());
}
auto monitor_iter =
output_to_monitor.find(static_cast<x11::RandR::Output>(output_id));
if (monitor_iter != output_to_monitor.end() && monitor_iter->second == 0) {
monitor_order_primary_display_index = display_index;
}
if (!display::HasForceDisplayColorProfile()) {
const size_t monitor =
monitor_iter == output_to_monitor.end() ? 0 : monitor_iter->second;
const auto& icc_profile = iccs[monitor < iccs.size() ? monitor : 0];
gfx::ColorSpace color_space = icc_profile.GetPrimariesOnlyColorSpace();
// Most folks do not have an ICC profile set up, but we still want to
// detect if a display has a wide color gamut so that HDR videos can be
// enabled. Only do this if |bits_per_component| > 8 or else SDR
// screens may have washed out colors.
if (bits_per_component > 8 && !color_space.IsValid()) {
color_space = display::GetColorSpaceFromEdid(edid_parser);
}
display.SetColorSpaces(
gfx::DisplayColorSpaces(color_space, gfx::BufferFormat::BGRA_8888));
}
display.set_color_depth(depth);
display.set_depth_per_component(bits_per_component);
// Set monitor refresh rate
float refresh_rate =
GetRefreshRateFromXRRModeInfo(resources->modes, crtc->mode);
display.set_display_frequency(refresh_rate);
}
if (displays.empty()) {
return GetFallbackDisplayList(primary_scale, primary_display_index_out);
}
if (explicit_primary_display_index != -1) {
*primary_display_index_out = explicit_primary_display_index;
} else if (monitor_order_primary_display_index != -1) {
*primary_display_index_out = monitor_order_primary_display_index;
} else {
*primary_display_index_out = 0;
}
if (!display::Display::HasForceDeviceScaleFactor()) {
for (auto& display : displays) {
display.set_device_scale_factor(
GetDisplayScale(display.bounds(), display_config));
}
ConvertDisplayBoundsToDips(&displays, *primary_display_index_out);
}
ClipWorkArea(&displays, *primary_display_index_out,
GetWorkAreaSync(std::move(work_area_future)));
return displays;
}
base::TimeDelta GetPrimaryDisplayRefreshIntervalFromXrandr() {
constexpr base::TimeDelta kDefaultInterval = base::Seconds(1. / 60);
size_t primary_display_index = 0;
auto displays = BuildDisplaysFromXRandRInfo(display::DisplayConfig(),
&primary_display_index);
CHECK_LT(primary_display_index, displays.size());
// TODO(crbug.com/41321728): It might make sense here to pick the output that
// the window is on. On the other hand, if compositing is enabled, all drawing
// might be synced to the primary output anyway. Needs investigation.
auto frequency = displays[primary_display_index].display_frequency();
return frequency > 0 ? base::Seconds(1. / frequency) : kDefaultInterval;
}
int RangeDistance(int min1, int max1, int min2, int max2) {
base::ClampedNumeric<int> l1 = min1;
base::ClampedNumeric<int> r1 = max1;
base::ClampedNumeric<int> l2 = min2;
base::ClampedNumeric<int> r2 = max2;
return std::max(std::min(l2 - r1, r2 - l1), std::min(l1 - r2, r1 - l2));
}
std::pair<int, int> RectDistance(const gfx::Rect& p, const gfx::Rect& q) {
const int dx = RangeDistance(p.x(), p.right(), q.x(), q.right());
const int dy = RangeDistance(p.y(), p.bottom(), q.y(), q.bottom());
return {std::max(dx, dy), std::min(dx, dy)};
}
void ConvertDisplayBoundsToDips(std::vector<display::Display>* displays,
size_t primary_display_index) {
// Position displays starting with the primary display, which will have it's
// origin directly converted from pixels to DIPs.
std::vector<gfx::PointF> origins_dip(displays->size());
const auto& primary_display = displays->at(primary_display_index);
origins_dip[primary_display_index] =
gfx::ScalePoint(gfx::PointF(primary_display.bounds().origin()),
1.0f / primary_display.device_scale_factor());
// Construct a minimum spanning tree of displays using Prim's algorithm. The
// root of the tree is the primary display, and every other display will be
// positioned relative to it's parent display.
using EdgeDistance = std::tuple<std::pair<int, int>, size_t, size_t>;
std::priority_queue<EdgeDistance, std::vector<EdgeDistance>, std::greater<>>
queue;
std::unordered_set<size_t> fringe;
for (size_t i = 0; i < displays->size(); i++) {
fringe.insert(i);
}
auto remove_from_fringe = [&](size_t parent) {
fringe.erase(parent);
for (size_t child : fringe) {
const auto dist = RectDistance(displays->at(parent).bounds(),
displays->at(child).bounds());
queue.emplace(dist, parent, child);
}
};
remove_from_fringe(primary_display_index);
while (!queue.empty()) {
auto [_, parent, child] = queue.top();
queue.pop();
if (fringe.contains(child)) {
origins_dip[child] = DisplayOriginPxToDip(
displays->at(parent), displays->at(child), origins_dip[parent]);
remove_from_fringe(child);
}
}
// Update the displays with the converted origins.
for (size_t i = 0; i < displays->size(); i++) {
auto& display = displays->at(i);
gfx::SizeF size_dip = gfx::ScaleSize(gfx::SizeF(display.size()),
1.0f / display.device_scale_factor());
gfx::Rect bounds_dip =
gfx::ToEnclosingRect(gfx::RectF(origins_dip[i], size_dip));
display.set_bounds(bounds_dip);
display.set_work_area(bounds_dip);
}
}
} // namespace ui
|